Lung infecfions place a higher burden on public health than other major diseases such as HIV/AIDS, cancer coronary heart disease, and strokes (WHO data).^ The innate immune system, which is the body's first line of defense against lung infecfion, includes pathogen recognition receptors such as Toll-like receptors (TLRs), producfion of infiammatory mediators such as cytokines and chemokines, and leukocyte recruitment and acfivafion. There is a paucity of information available with regard to the role of specific extracellular matrix (ECM) components in the innate immune response. Our preliminary data show that very little versican, an ECM proteoglycan, is present in healthy lungs but that the TLR4 agonist, lipopolysaccharide (LPS), as well as Pseudomonas aeruginosa and respiratory syncytial virus (RSV) rapidly increase versican accumulation in the extracellular space in the lungs of mice. This increase in versican occurs during the eariy phases of lung inflammation and coincides with leukocyte infiltration. Furthermore, our preliminary experiments show that human lung fibroblasts treated with the TLR3 agonist and viral mimefic, poly l:C produce a versican-enriched ECM that forms a macromolecular complex with another extracellular macromolecule, hyaluronan, to promote monocyte adhesion to the ECM in a versican-dependent manner. Our preliminary results and published work suggest that versican accumulafion is important in the innate immune response to lung infection and have led us to formulate our Central Hypothesis, which is that versican plays a key role in the innate immune response to lung infection by promoting the adhesion, retention, and activation of monocytes, macrophages and neutrophils. We propose to determine the role of versican in the innate immune response to lung infection through complefion of the following four Aims: (1) Define the composifion and compartmentalization of the versican-enriched ECM that accumulates in the lungs of mice exposed to Pseudomonas aeruginosa and respiratory syncytial virus (RSV) Infecfion and determine its role in leukocyte adhesion;(2) Determine the TLRs and the TLR signaling pathways responsible for the accumulafion of versican in the lungs of mice infected with P. aeruginosa and RSV;(3) Define the impact of versican on macrophage phenotype and function and determine the role of versican produced by pulmonary macrophages in the innate immune response to lung infecfion;and (4) Determine the requirement for versican in the innate immune response in the lungs of mice infected with P. aeruginosa and RSV.

Public Health Relevance

In order to treat or prevent lung disease associated with bacterial or viral infecfion it is important to define key macromolecular components that are increased in the lung in response to infectious agents that influence the inflammatory response and that can be targeted for the treatment. We have identified one such component, versican, and we will perform a series of studies to establish the role of this molecule in infecfious lung disease in order to develop strategies to prevent its pro-inflammatory activity

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL098067-01A1
Application #
8005411
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2010-08-10
Project End
2015-05-31
Budget Start
2010-08-10
Budget End
2011-05-31
Support Year
1
Fiscal Year
2010
Total Cost
$514,947
Indirect Cost
Name
Benaroya Research Institute at Virginia Mason
Department
Type
DUNS #
076647908
City
Seattle
State
WA
Country
United States
Zip Code
98101
Rohani, Maryam G; Dimitrova, Elizabeth; Beppu, Andrew et al. (2018) Macrophage MMP10 Regulates TLR7-Mediated Tolerance. Front Immunol 9:2817
Maisel, Katharina; Merrilees, Mervyn J; Atochina-Vasserman, Elena N et al. (2018) Immune Checkpoint Ligand PD-L1 Is Upregulated in Pulmonary Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 59:723-732
Han, H; Roan, F; Johnston, L K et al. (2018) IL-33 promotes gastrointestinal allergy in a TSLP-independent manner. Mucosal Immunol 11:394-403
Evanko, Stephen P; Chan, Christina K; Johnson, Pamela Y et al. (2018) The biochemistry and immunohistochemistry of versican. Methods Cell Biol 143:261-279
Secor, Patrick R; Michaels, Lia A; Smigiel, Kate S et al. (2017) Filamentous Bacteriophage Produced by Pseudomonas aeruginosa Alters the Inflammatory Response and Promotes Noninvasive Infection In Vivo. Infect Immun 85:
Han, Hongwei; Ziegler, Steven F (2017) Intradermal administration of IL-33 induces allergic airway inflammation. Sci Rep 7:1706
Wight, Thomas N; Frevert, Charles W; Debley, Jason S et al. (2017) Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol 312:1-14
Wight, Thomas N (2017) Provisional matrix: A role for versican and hyaluronan. Matrix Biol 60-61:38-56
Merrilees, Mervyn J; Falk, Ben A; Zuo, Ning et al. (2017) Use of versican variant V3 and versican antisense expression to engineer cultured human skin containing increased content of insoluble elastin. J Tissue Eng Regen Med 11:295-305
Gaucherand, Léa; Falk, Ben A; Evanko, Stephen P et al. (2017) Crosstalk Between T Lymphocytes and Lung Fibroblasts: Generation of a Hyaluronan-Enriched Extracellular Matrix Adhesive for Monocytes. J Cell Biochem 118:2118-2130

Showing the most recent 10 out of 83 publications