Significance Light microscopy advanced our understanding of cellular structure and associated functions. Research has shown that cellular events, such as signal transduction and gene transcription, require the assembly of proteins into specific macromolecular complexes. Traditional biophysical or biochemical methods have not provided direct access to interactions of protein partners in their natural environments but light microscopic techniques allow us to study molecules under physiological conditions. New imaging technologies, coupled with the development of new genetically encoded fluorescent labels and sensors, and the increasing capability of computer software for image acquisition and analysis, have enabled researchers to conduct more sophisticated studies of the functions and processes of protein molecules, ranging from gene expression to second-messenger cascades and intercellular signaling (DelPozo et al., 2002;Struck et al., 1981;Roessel and Brand, 2002;Ting et al., 2001). One highly sensitive and non-invasive method of protein molecular imaging is Forster (fluorescence) resonance energy transfer (FRET) microscopy. FRET is a distance-dependent physical process, where energy is transferred nonradiatively from an excited molecular fluorophore (donor) to another fluorophore (acceptor) by means of intermolecular longrange dipole-dipole coupling. FRET can accurately measure molecular proximity (1-10 nm), typically when donor and acceptor are positioned within the Forster radius (the distance at which half the excitation energy of the donor is transferred to the acceptor, ~3-6 nm). The efficiency of FRET is dependent on the inverse sixth power of intermolecular separation (Forster, 1965;Lakowicz, 1999;Stryer, 1978), making it a sensitive method for investigating a variety of biological phenomena that produce changes in molecular proximity (Cummings et al., 2002;Day et al 2003;Miyawaki et al., 1999;Wallrabe et al., 2003a). If FRET occurs, donor fluorescence is quenched and acceptor fluorescence is sensitized (increased) (Periasamy and Day, 2005). Co-localization of the donor- and acceptor-labeled probes can be seen within ~0.09 um and molecular associations at close distances can be verified.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL101871-01A1
Application #
8141727
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2011-04-15
Project End
2016-03-31
Budget Start
2011-04-15
Budget End
2012-03-31
Support Year
1
Fiscal Year
2011
Total Cost
$215,050
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Baby, Santhosh M; Gruber, Ryan B; Young, Alex P et al. (2018) Bilateral carotid sinus nerve transection exacerbates morphine-induced respiratory depression. Eur J Pharmacol 834:17-29
Stsiapura, Vitali I; Bederman, Ilya; Stepuro, Ivan I et al. (2018) S-Nitrosoglutathione formation at gastric pH is augmented by ascorbic acid and by the antioxidant vitamin complex, Resiston. Pharm Biol 56:86-93
Dhingra, Rishi R; Dutschmann, Mathias; Galán, Roberto F et al. (2017) Kölliker-Fuse nuclei regulate respiratory rhythm variability via a gain-control mechanism. Am J Physiol Regul Integr Comp Physiol 312:R172-R188
Thomas, Ryan G; Rivera Reyes, Brenda M; Gaston, Benjamin M et al. (2017) Conjugation of nitrated acetaminophen to Der p1 amplifies peripheral blood monocyte response to Der p1. PLoS One 12:e0188614
Sun, Bei Lei; Palmer, Lisa; Alam, Shagufta Rehman et al. (2017) O-Aminobenzoyl-S-nitrosoglutathione: A fluorogenic, cell permeable, pseudo-substrate for S-nitrosoglutathione reductase. Free Radic Biol Med 108:445-451
Raffay, Thomas M; Dylag, Andrew M; Di Fiore, Juliann M et al. (2016) S-Nitrosoglutathione Attenuates Airway Hyperresponsiveness in Murine Bronchopulmonary Dysplasia. Mol Pharmacol 90:418-26
Zaman, Khalequz; Sawczak, Victoria; Zaidi, Atiya et al. (2016) Augmentation of CFTR maturation by S-nitrosoglutathione reductase. Am J Physiol Lung Cell Mol Physiol 310:L263-70
Stsiapura, Vitali I; Shuali, Vincent K; Gaston, Benjamin M et al. (2015) Detection of S-nitroso compounds by use of midinfrared cavity ring-down spectroscopy. Anal Chem 87:3345-53
Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan et al. (2015) Three-color confocal Förster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells. Cytometry A 87:580-8
Marozkina, Nadzeya V; Wang, Xin-Qun; Stsiapura, Vitali et al. (2015) Phenotype of asthmatics with increased airway S-nitrosoglutathione reductase activity. Eur Respir J 45:87-97

Showing the most recent 10 out of 46 publications