The Chemistry and Biology of Heparan Sulfate'program project consists of several supporting Cores. This document describes the 'Computational Chemistry and Biology Core'. This Core will be co-ordinated by Dr. Mosier of Virginia Commonwealth University. This Core will be established to primarily address the computational requirements of the PEG and secondarily to serve the needs of the wider glycoscience community. The primary objectives of the Core will be: 1) to perform computational analyses related to the PEG, which will include the Combinatorial Virtual Library Screening (CVLS) experiments;2) to set up, maintain and periodically update the hardware and software required for such analyses;3) to provide on-site and distance-based training for post-doctoral fellows and other scientists of the PEG;4) to facilitate communication among the members of the PEG;5) to disseminate tools, data, and other relevant information to members of the PEG;and 6) to develop advanced computational tools and protocols for better understanding of GAG-protein interactions.

Public Health Relevance

The Computational Chemistry and Biology Core will support the 'The Chemistry and Biology of Heparan Sulfate'program project on all aspects of computational experimentation. The PEG proposes to utilize computational chemistry and biology in the design of heparan sulfate molecules that are potentially useful in the treatment of thrombotic and inflammatory disorders as well as resolve coagulation problems observed in during pig to non-human primate xenotransplantation.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL107152-04
Application #
8669121
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
4
Fiscal Year
2014
Total Cost
$51,277
Indirect Cost
$16,978
Name
Virginia Commonwealth University
Department
Type
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Sepuru, Krishna Mohan; Nagarajan, Balaji; Desai, Umesh R et al. (2018) Structural basis, stoichiometry, and thermodynamics of binding of the chemokines KC and MIP2 to the glycosaminoglycan heparin. J Biol Chem 293:17817-17828
Gangji, Rahaman Navaz; Sankaranarayanan, Nehru Viji; Elste, James et al. (2018) Inhibition of Herpes Simplex Virus-1 Entry into Human Cells by Nonsaccharide Glycosaminoglycan Mimetics. ACS Med Chem Lett 9:797-802
Rajarathnam, Krishna; Sepuru, Krishna Mohan; Joseph, Prem Raj B et al. (2018) Glycosaminoglycan Interactions Fine-Tune Chemokine-Mediated Neutrophil Trafficking: Structural Insights and Molecular Mechanisms. J Histochem Cytochem 66:229-239
French, Beth M; Sendil, Selin; Sepuru, Krishna Mohan et al. (2018) Interleukin-8 mediates neutrophil-endothelial interactions in pig-to-human xenogeneic models. Xenotransplantation 25:e12385
Kidokoro, Hinako; Yonei-Tamura, Sayuri; Tamura, Koji et al. (2018) The heart tube forms and elongates through dynamic cell rearrangement coordinated with foregut extension. Development 145:
Tran, Diem-Trang; Zhang, Tian; Stutsman, Ryan et al. (2018) anexVis: visual analytics framework for analysis of RNA expression. Bioinformatics 34:2510-2512
Cutler, Brett Ronald; Gholami, Samira; Chua, Jie Shi et al. (2018) Blueberry metabolites restore cell surface glycosaminoglycans and attenuate endothelial inflammation in diabetic human aortic endothelial cells. Int J Cardiol 261:155-158
Laird, Christopher T; Hassanein, Wessam; O'Neill, Natalie A et al. (2018) P- and E-selectin receptor antagonism prevents human leukocyte adhesion to activated porcine endothelial monolayers and attenuates porcine endothelial damage. Xenotransplantation 25:e12381
Samudra, Anushka N; Dwyer, Karen M; Selan, Carly et al. (2018) CD39 and CD73 activity are protective in a mouse model of antiphospholipid antibody-induced miscarriages. J Autoimmun 88:131-138
Kummarapurugu, Apparao B; Afosah, Daniel K; Sankaranarayanan, Nehru Viji et al. (2018) Molecular principles for heparin oligosaccharide-based inhibition of neutrophil elastase in cystic fibrosis. J Biol Chem 293:12480-12490

Showing the most recent 10 out of 151 publications