instnjctions): Recently, the modification of nuclear, mitochondrial, and cytoplasmic proteins by O-linked p-N- acetylglucosamine (0-GlcNAc) has emerged as a novel regulator of the stress response and cell survival. Numerous forms of cellular injury, including cardiac ischemic preconditioning (acute and prolonged), lead to elevated levels of 0-GlcNAc in both in vivo and in vitro models. Elevating 0-GlcNAcylation before, or immediately after, the induction of cellular injury is protective in models of ischemia reperfusion injury, as well as heat stress, oxidative stress, endoplasmic reticulum stress, hypoxia, and trauma hemorrhage. Together, these data suggest that 0-GlcNAc is a novel endogenous cardioprotective agent. However, the molecular mechanisms by which 0-GlcNAc regulates protein function leading to enhanced cell survival and cardioprotection have not been identified. The long term goal of this investigator, is to identify at a molecular level the mechanisms by which 0-GlcNAc promotes cell survival. The objective of this application is to: 1) Define the role(s) of 0-GlcNAc in mediating ischemic preconditioning. In order to characterize the mechanisms by which 0-GlcNAc leads to cardioprotection, proteins dynamically O-GlcNAc modified in response to ischemic-preconditioning will be identified and pathways that lead to enhanced 0-GlcNAcylation will be defined. 2) Elucidate the molecular mechanism(s) by which 0-GlcNAc regulates the process of autophagy leading to cardioprotection. To characterize the molecular mechanisms by which 0-GlcNAc protects cardiomyocytes via autophagy we will define: 1) the role of 0-GlcNAc in inducing autophagy during ischemic preconditioning; 2) if enhanced autophagy is critical for 0- GlcNAc mediated cardioprotection; 3) the identity of proteins involved directly in autophagy (or regulating autophagy) that are modified and regulated by 0-GlcNAc. Together, these studies will characterize a novel endogenous defense mechanism of the heart, highlighting new targets for the development of alternative strategies that enhance the hearts tolerance to ischemia reperfusion injury.

Public Health Relevance

The sugar 0-GlcNAc is a key component of the cellular stress response that enhances the ability of cells and tissues to survive ischemia reperfusion injury (for example, heart attack), but the mechanisms by which O- GlcNAc protects cells are unknown. Our goal is to understand how 0-GlcNAc promotes cell survival in a model of ischemia reperfusion injury at the molecular level, thus identifying new targets for the development of alternative strategies to enhance the heart's tolerance to ischemia reperfusion injury.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL107153-07
Application #
9281803
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Danthi, Narasimhan
Project Start
Project End
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
7
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Harosh-Davidovich, Shani Ben; Khalaila, Isam (2018) O-GlcNAcylation affects ?-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer. Exp Cell Res 364:42-49
Drake, Walter R; Hou, Ching-Wen; Zachara, Natasha E et al. (2018) New use for CETSA: monitoring innate immune receptor stability via post-translational modification by OGT. J Bioenerg Biomembr 50:231-240
Höti, Naseruddin; Yang, Shuang; Hu, Yingwei et al. (2018) Overexpression of ? (1,6) fucosyltransferase in the development of castration-resistant prostate cancer cells. Prostate Cancer Prostatic Dis 21:137-146
Hashimoto, Toru; Kim, Grace E; Tunin, Richard S et al. (2018) Acute Enhancement of Cardiac Function by Phosphodiesterase Type 1 Inhibition. Circulation 138:1974-1987
Rainer, Peter P; Dong, Peihong; Sorge, Matteo et al. (2018) Desmin Phosphorylation Triggers Preamyloid Oligomers Formation and Myocyte Dysfunction in Acquired Heart Failure. Circ Res 122:e75-e83
Groves, Jennifer A; Zachara, Natasha E (2017) Characterization of tools to detect and enrich human and mouse O-GlcNAcase. Glycobiology :
Yang, Shuang; Hu, Yingwei; Sokoll, Lori et al. (2017) Simultaneous quantification of N- and O-glycans using a solid-phase method. Nat Protoc 12:1229-1244
Yang, Weiming; Shah, Punit; Hu, Yingwei et al. (2017) Comparison of Enrichment Methods for Intact N- and O-Linked Glycopeptides Using Strong Anion Exchange and Hydrophilic Interaction Liquid Chromatography. Anal Chem 89:11193-11197
Grima, Jonathan C; Daigle, J Gavin; Arbez, Nicolas et al. (2017) Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron 94:93-107.e6
Groves, Jennifer A; Maduka, Austin O; O'Meally, Robert N et al. (2017) Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress. J Biol Chem 292:6493-6511

Showing the most recent 10 out of 137 publications