The purpose of Core B - Mouse Models of Fibroproliferative Lung Disease - is to provide a resource for investigators to conduct studies in mice. The Director of Core B, Julia K. L. Walker, Ph.D., is a physiologist who has extensive experience with mouse models of lung inflammation. The Co-director, Dianhua Jiang, M.D., Ph.D., is an expert in lung cell and molecular biology who has extensively studied mechanisms that control lung flbrosis. A major strength of this program project grant is that each project is centered around the common theme that endogenous matrix components drive a pro-flbrofic fibroblast phenotype and that this underiies fibroproliferative lung diseases. By conducting standardized mouse models of pulmonary fibroproliferation, including a bleomycin model of pulmonary fibrosis and a chronic allergen-induced model of asthmatic airway remodeling, the Animal Core will facilitate interactions among the three projects and enhance their synergy. Additionally, the Core will coordinate histological preparation and analysis of fixed lung so that this evaluation will also be standardized. The Animal Core will work with investigators to provide lung fissue from which primary fibroblast and other cell cultures can be made. In summary, the Animal Core will provide the investigators with a facility where mice, experimental equipment and methods of analysis are consolidated and that is supported by skilled staff with expertise in all aspects of lung disease development and assessment. Centralizing the animal work in the Animal Core will reduce the cost of producing high-quality data and will facilitate interactions among the different projects. Therefore, the Animal Core will play an important role in the successful completion of work proposed in this Program Project.
Fibroproliferative lung diseases such as pulmonary fibrosis and chronic asthma represent a serious unmet medical need and no therapies have been approved by the FDA to treat fibrosing lung diseases. The goal of the Animal Core is to provide investigators with standardized mouse models of lung fibrosis. These studies will improve the mechanistic understanding of fibrosing lung diseases and hopefully lead to novel therapeutic strategies to treat them.
Showing the most recent 10 out of 23 publications