Identification of mutations in human smooth muscle actin {ACTA2) and myosin strongly suggest that disruption of smooth muscle cell contractile function predisposes individuals to thoracic aortic aneurysms and aortic dissections (TAAD). Project 1 seeks to determine the molecular mechanisms by which ACTA2 missense mutations lead to TAAD and occlusive vascular diseases. The hypothesis is that ACTA2 mutations lead to altered force output and energetic overload of smooth muscle cells, likely contributing to the eventual death of the cells. This proposal depends on our demonstrated ability to express human smooth muscle actin and myosin in Sf9 cells.
In Aim 1 we will assess if ACrA2 missense mutations alter filament assembly or the structural integrity of the filament. Single filament polymerization assays using total internal reflection fluorescence (TIRF) microscopy will be used to follow assembly and disassembly of individual filaments as a function of time, which will identify mutants with polymerization defects. The ability of the mutant actins to copolymerize with WT will be tested. Altered structural integrity of the filament will be evaluated by flexural rigidity measurements. Actin acts as a structural element through which force is transmitted, so even subtle alterations in the filament structure could have profound effects on force production by myosin.
In Aim 2 it will be determined if ACTA2 missense mutations affect the ability of myosin to generate motion and force. The interaction of actin with smooth muscle myosin will be assessed by an unloaded ensemble motility assay, which reflects the kinetics of the actomyosin interaction. Mutants will be further characterized under load using a force-clamp laser trap assay, which involves single actin filaments interacting with a small ensemble of myosin at different constant loads. These measurements will provide the average maximum isometric force generated by myosin. Decreased power output could trigger compensatory mechanisms in the smooth muscle cell. Homo and heteropolymers will be compared, as well as pure actin versus actin- tropomyosin.
Aim 3 determines if ACTA2 missense mutations alter actin filament structure, or the conformational dynamics of the filament. Actin filament structure will first be analyzed by electron microscopy of negatively stained filaments. High resolution cryo-electron microscopy (collaboration with Dr. Egelman) will then be used to test if the actin mutations interfere with the conformational dynamics of actin. This possibility is likely given that many of the mutations are buried, and cannot directly affect the interaction with myosin or other actin-binding proteins.

Public Health Relevance

Mutations in human smooth muscle actin (ACTA2) and myosin, and in the kinase that activates myosin, have been linked to thoracic aortic aneurysms (TAAD), as well as premature stroke and coronary artery disease. Mutations in ACTA2 are responsible for -15% of reported cases of TAAD. This project seeks to study the effect of the mutations in ACTA2 at the molecular level to allow an understanding of the pathological processes that take place, which in turn could lead to new insights and better treatments for these diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
4P01HL110869-05
Application #
9123663
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
5
Fiscal Year
2016
Total Cost
$430,845
Indirect Cost
$22,577
Name
University of Texas Health Science Center Houston
Department
Type
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Shalata, Adel; Mahroom, Mohammad; Milewicz, Dianna M et al. (2018) Fatal thoracic aortic aneurysm and dissection in a large family with a novel MYLK gene mutation: delineation of the clinical phenotype. Orphanet J Rare Dis 13:41
Regalado, Ellen S; Mellor-Crummey, Lauren; De Backer, Julie et al. (2018) Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations. Genet Med 20:1206-1215
Lowey, Susan; Bretton, Vera; Joel, Peteranne B et al. (2018) Hypertrophic cardiomyopathy R403Q mutation in rabbit ?-myosin reduces contractile function at the molecular and myofibrillar levels. Proc Natl Acad Sci U S A 115:11238-11243
Robinet, Peggy; Milewicz, Dianna M; Cassis, Lisa A et al. (2018) Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies-Statement From ATVB Council. Arterioscler Thromb Vasc Biol 38:292-303
Kwartler, Callie S; Gong, Limin; Chen, Jiyuan et al. (2018) Variants of Unknown Significance in Genes Associated with Heritable Thoracic Aortic Disease Can Be Low Penetrant ""Risk Variants"". Am J Hum Genet 103:138-143
Tan, Kai Li; Haelterman, Nele A; Kwartler, Callie S et al. (2018) Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms. Dev Cell 45:226-244.e8
Guo, Dong-Chuan; Regalado, Ellen S; Pinard, Amelie et al. (2018) LTBP3 Pathogenic Variants Predispose Individuals to Thoracic Aortic Aneurysms and Dissections. Am J Hum Genet 102:706-712
Guo, Dong-Chuan; Hostetler, Ellen M; Fan, Yuxin et al. (2017) Heritable Thoracic Aortic Disease Genes in Sporadic Aortic Dissection. J Am Coll Cardiol 70:2728-2730
Ren, Pingping; Hughes, Michael; Krishnamoorthy, Swapna et al. (2017) Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci Rep 7:12351
Liu, Zhenan; Chang, Audrey N; Grinnell, Frederick et al. (2017) Vascular disease-causing mutation, smooth muscle ?-actin R258C, dominantly suppresses functions of ?-actin in human patient fibroblasts. Proc Natl Acad Sci U S A 114:E5569-E5578

Showing the most recent 10 out of 54 publications