Core A will provide logistics support for all other projects and cores. Regular group meetings will be coordinated through Core A. Many of the organizational elements have come into existence during the past year preparing for submission of the proposal, including regular group meetings where off-site members have joined via Skype, regularly scheduled face-to-face meetings coordinated with scientific conferences, and exchange of lab personnel. The Administrative Core will establish and maintain an interactive web-based platform to support communications among members via email, GoogleDocs, and Skype video conferencing. Interactions with the internal and external advisory boards will be coordinated through Core A. The Core will facilitate preparation and submission of abstracts and manuscripts, ensure timely submission of progress reports to NIH, and provide budgetary oversight for project expenditures. Purchasing, sample receiving and archiving, publications, and travel will be coordinated through Core A. This Core will monitor progress of each Project and Core, and will coordinate studies among investigators. The Core will manage the database, which will allow tracking and consolidation of all experimental data linked to each animal.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL112730-01A1
Application #
8575150
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$193,819
Indirect Cost
$64,174
Name
San Diego State University
Department
Type
DUNS #
073371346
City
San Diego
State
CA
Country
United States
Zip Code
92182
Lindsey, Merry L; Bolli, Roberto; Canty Jr, John M et al. (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812-H838
Coronado, Michael; Fajardo, Giovanni; Nguyen, Kim et al. (2018) Physiological Mitochondrial Fragmentation Is a Normal Cardiac Adaptation to Increased Energy Demand. Circ Res 122:282-295
Stastna, Miroslava; Thomas, Amandine; Germano, Juliana et al. (2018) Dynamic Proteomic and miRNA Analysis of Polysomes from Isolated Mouse Heart After Langendorff Perfusion. J Vis Exp :
Chung, Heaseung Sophia; Murray, Christopher I; Van Eyk, Jennifer E (2018) A Proteomics Workflow for Dual Labeling Biotin Switch Assay to Detect and Quantify Protein S-Nitroylation. Methods Mol Biol 1747:89-101
Crupi, Annunziata N; Nunnelee, Jordan S; Taylor, David J et al. (2018) Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging (Albany NY) 10:3327-3352
Kloner, Robert A; Brown, David A; Csete, Marie et al. (2017) New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 14:679-693
Giricz, Zoltán; Varga, Zoltán V; Koncsos, Gábor et al. (2017) Autophagosome formation is required for cardioprotection by chloramphenicol. Life Sci 186:11-16
Delbridge, Lea M D; Mellor, Kimberley M; Taylor, David J et al. (2017) Myocardial stress and autophagy: mechanisms and potential therapies. Nat Rev Cardiol 14:412-425
Chung, Heaseung Sophia; Kim, Grace E; Holewinski, Ronald J et al. (2017) Transient receptor potential channel 6 regulates abnormal cardiac S-nitrosylation in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114:E10763-E10771
Gottlieb, Roberta A; Thomas, Amandine (2017) Mitophagy and Mitochondrial Quality Control Mechanisms in the Heart. Curr Pathobiol Rep 5:161-169

Showing the most recent 10 out of 41 publications