A major factor in mortality from atherosclerotic cardiovascular disease is the formation and expansion of necrotic cores within lesions, which arise when macrophages that normally carry out efferocytosis (phagocytosis of apoptotic cells) fail to clear apoptotic cells and instead undergo secondary necrosis. This project seeks to elucidate the contribution of two families of lipids, isolevuglandins (IsoLG) and N- acylethanolamides (NAEs), that potentially interact through HDL to altered macrophage efferocytic function, as well as the role of Nape-pld, an enzyme that catalyzes both the formation of NAEs and the degradation of the IsoLG adducts. We hypothesize that under normal conditions HDL promotes the ability of macrophages to carry out efferocytosis by 1) accepting the cholesterol that macrophages take up during phagocytosis of apoptotic cells and 2) delivering NAE precursors to macrophages which use their Nape-pld to hydrolyze these precursors to NAEs which can promote expression of genes needed for efferocytosis. We hypothesize that in conditions that promote atherosclerosis, HDL becomes modified by IsoLG which retards efferocytosis by 1) inhibiting HDL's ability to accept cholesterol and 2) creating ligands recognized by pattern recognition receptors that drive macrophages to a pro-inflammatory phenotype with high expression of inflammatory cytokines and low expression of proteins needed for efferocytosis. Thus, IsoLG modification of HDL and reduced Nape-pld expression combine to suppress the efferocytic capacity of macrophages, leading to the formation and expansion of necrotic cores which create vulnerable atherosclerotic plaques. We will test this hypothesis as follows:
Aim 1 will determine if apoAI lysine residues critical to cholesterol efflux are modified by isolevuglandins during development of atherosclerosis.
Aim 2 will elucidate the mechanisms whereby HDL modified by lipid dicarbonyls potentiate inflammation in macrophages and determine if these alterations contribute to reduced efferocytosis.
Aim 3 will determine the effects of macrophage Nape-pld deletion on atherosclerosis and macrophage efferocytic capacity.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Liu, Lijuan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
May-Zhang, Linda S; Yermalitsky, Valery; Huang, Jiansheng et al. (2018) Modification by isolevuglandins, highly reactive ?-ketoaldehydes, deleteriously alters high-density lipoprotein structure and function. J Biol Chem 293:9176-9187
Allen, Ryan M; Zhao, Shilin; Ramirez Solano, Marisol A et al. (2018) Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. J Extracell Vesicles 7:1506198
Mueller, Paul A; Zhu, Lin; Tavori, Hagai et al. (2018) Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages. Circulation 138:1850-1863
Li, Kang; Rodosthenous, Rodosthenis S; Kashanchi, Fatah et al. (2018) Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight 3:
Babaev, Vladimir R; Ding, Lei; Zhang, Youmin et al. (2018) Loss of 2 Akt (Protein Kinase B) Isoforms in Hematopoietic Cells Diminished Monocyte and Macrophage Survival and Reduces Atherosclerosis in Ldl Receptor-Null Mice. Arterioscler Thromb Vasc Biol :ATVBAHA118312206
Kaseda, R; Tsuchida, Y; Gamboa, J L et al. (2018) Angiotensin receptor blocker vs ACE inhibitor effects on HDL functionality in patients on maintenance hemodialysis. Nutr Metab Cardiovasc Dis 28:582-591
Kaseda, Ryohei; Tsuchida, Yohei; Yang, Hai-Chun et al. (2018) Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism. BMC Nephrol 19:17
Babaev, Vladimir R; Huang, Jiansheng; Ding, Lei et al. (2018) Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 9:215
Byram, Kevin W; Oeser, Annette M; Linton, MacRae F et al. (2018) Exercise is Associated With Increased Small HDL Particle Concentration and Decreased Vascular Stiffness in Rheumatoid Arthritis. J Clin Rheumatol 24:417-421
Sedgeman, Leslie R; Beysen, Carine; Allen, Ryan M et al. (2018) Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am J Physiol Gastrointest Liver Physiol :

Showing the most recent 10 out of 59 publications