The Core C (Physiology Core) for the MCW program project grant, entitled ?Renal Mechanisms in Blood Pressure Control?, will support program project investigators with comprehensive biochemical, microscopy, electrophysiological, and phenotyping services to assess physiological and pathophysiological function of the kidney in the control of blood pressure. The need for Core C is apparent considering the current heavy use and anticipated use in the proposed protocols. Throughout the history of the PPG, Core C has provided centralized, standardized research services that have enabled program investigators to engage in cutting edge research. The overall goal of Core C is to assist program project investigators with the application of many of the basic and more-comprehensive analyses relevant to the study of kidney physiology and its relationship to the blood pressure control at the cellular, organ, and whole animal level. Multiple approaches will be offered, including biochemical analysis, chronic blood pressure measurement by telemetry or indwelling catheters, laser-Doppler flowmetry, GFR measurement, biosensors, fluorescence probes, and electrophysiology analysis in freshly isolated tubules. Core C will serve as an invaluable resource for the project investigators to define the specific mechanisms that lead to the control of blood pressure and kidney diseases. Core staff will also assist in experimental design and training of the laboratory staff, and participate in data collection and analysis.

Public Health Relevance

Physiology Core C is an essential component of this PPG and will support all three projects. The scientific projects share the common goal of providing novel insights into the mechanisms and functional pathways underlying the development of salt-sensitive hypertension and renal damage. The overall goal of Core C is to provide all PPG project investigators access to modern equipment and technical expertise needed to perform a wide variety of high quality assays and approaches necessary to conduct proposed studies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL116264-08
Application #
9841972
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
OH, Youngsuk
Project Start
Project End
Budget Start
2020-01-01
Budget End
2020-12-31
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Medical College of Wisconsin
Department
Type
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Abais-Battad, Justine M; Mattson, David L (2018) The Influence of Dietary Protein on Dahl Salt-Sensitive Hypertension: a Potential Role for Gut Microbiota. Am J Physiol Regul Integr Comp Physiol :
Staruschenko, Alexander (2018) Beneficial Effects of High Potassium: Contribution of Renal Basolateral K+ Channels. Hypertension 71:1015-1022
Cheng, Yuan; Song, Haiying; Pan, Xiaoqing et al. (2018) Urinary Metabolites Associated with Blood Pressure on a Low- or High-Sodium Diet. Theranostics 8:1468-1480
Kumar, Vikash; Evans, Louise C; Kurth, Theresa et al. (2018) Therapeutic Suppression of mTOR (Mammalian Target of Rapamycin) Signaling Prevents and Reverses Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats. Hypertension :HYPERTENSIONAHA11812378
Cowley Jr, Allen W (2018) Chrm3 Gene and M3 Muscarinic Receptors Contribute to Salt-Sensitive Hypertension. Hypertension 72:588-591
Palygin, Oleg; Pochynyuk, Oleh; Staruschenko, Alexander (2018) Distal tubule basolateral potassium channels: cellular and molecular mechanisms of regulation. Curr Opin Nephrol Hypertens 27:373-378
Ilatovskaya, Daria V; Blass, Gregory; Palygin, Oleg et al. (2018) A NOX4/TRPC6 Pathway in Podocyte Calcium Regulation and Renal Damage in Diabetic Kidney Disease. J Am Soc Nephrol 29:1917-1927
Mattson, David L (2018) Heat stress nephropathy and hyperuricemia. Am J Physiol Renal Physiol 315:F757-F758
Abais-Battad, Justine M; Lund, Hayley; Fehrenbach, Daniel J et al. (2018) Rag1-null Dahl SS rats reveal that adaptive immune mechanisms exacerbate high protein-induced hypertension and renal injury. Am J Physiol Regul Integr Comp Physiol 315:R28-R35
Bukowy, John D; Dayton, Alex; Cloutier, Dustin et al. (2018) Do computers dream of electric glomeruli? Kidney Int 94:635

Showing the most recent 10 out of 48 publications