The specific aim of this Core Computing Center is to provide comprehensive computer support to clinical, laboratory and core projects of the Head Injury Center. This core facility operates an ICU based VAX computer which is used in several aspects of center research. The VAX directly acquires real-time physiological data from patient monitoring equipment with 30 second resolution. This data is digitally filtered to remove artifact, reduced following investigator supplied criteria, and stored for subsequent analysis. This data provides a detailed description of the patient ICU course and augments other data collected both manually and by computers in the other projects. Extensive database support is provided to clinical, laboratory and core projects using the INGRES relational database system. This service includes: (1) consultation with the investigators and other core projects before a study is begun. (2) design and implementation investigators database table, forms and reports, (3) data collection and entry services, (4) data validation and security , (5)data archival and backup, (6) data retrieval, and (7) transferring data to the Biostatistical Core for more sophisticated analysis. Investigators access Core Computer Center facilities through a campus-wide network. Data and analysis is available on-line to provide continuous supported projects. In addition general computing support for center staff using personal computers and other university and department computing facilities is provided.

Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
1989
Total Cost
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
City
Richmond
State
VA
Country
United States
Zip Code
23298
Kleindienst, Andrea; Dunbar, Jana G; Glisson, Renee et al. (2013) The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir (Wien) 155:151-64
Fazzina, Giovanna; Amorini, Angela M; Marmarou, Christina R et al. (2010) The protein kinase C activator phorbol myristate acetate decreases brain edema by aquaporin 4 downregulation after middle cerebral artery occlusion in the rat. J Neurotrauma 27:453-61
Hartings, Jed A; Strong, Anthony J; Fabricius, Martin et al. (2009) Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 26:1857-66
Mazzeo, Anna Teresa; Brophy, Gretchen M; Gilman, Charlotte B et al. (2009) Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: results from a prospective randomized trial. J Neurotrauma 26:2195-206
Samuelson, Rod; Mazzeo, Anna; Kunene, Nikki et al. (2006) Synthes Award For Resident Research On Craniofacial And Brain Injury: effect of cyclosporin A, topiramate, or 100% oxygen as proposed ""neuroprotective"" therapies on the neurochemical analytes in patients with severe traumatic brain injury. Clin Neurosurg 53:307-12
Stiefel, Michael F; Tomita, Yoshiyuki; Marmarou, Anthony (2005) Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg 103:707-14
Stiefel, Michael F; Marmarou, Anthony (2002) Cation dysfunction associated with cerebral ischemia followed by reperfusion: a comparison of microdialysis and ion-selective electrode methods. J Neurosurg 97:97-103
Yamamoto, M; Marmarou, C R; Stiefel, M F et al. (1999) Neuroprotective effect of hypothermia on neuronal injury in diffuse traumatic brain injury coupled with hypoxia and hypotension. J Neurotrauma 16:487-500
Barzo, P; Marmarou, A; Fatouros, P et al. (1997) MRI diffusion-weighted spectroscopy of reversible and irreversible ischemic injury following closed head injury. Acta Neurochir Suppl 70:115-8
Marmarou, A; Barzo, P; Fatouros, P et al. (1997) Traumatic brain swelling in head injured patients: brain edema or vascular engorgement? Acta Neurochir Suppl 70:68-70

Showing the most recent 10 out of 14 publications