The Clinical Core's primary function is to provide patients and patient material for HD research projects within our program and our institution, and to investigators at other institutions. The Core accomplishes this by diagnosing and following approximately 300 well-characterized HD patients, many of whom are drawn from a representative Maryland sample first identified in 1980. Approximately 40 new patients according to a protocol developed for HD by the core staff. The protocol provides detailed documentation of time and mode of onset, neurological features, functional capacity, cognitive state, and psychiatric state. For this renewal, new patients will be MRI scanned at the time of diagnosis and every two years thereafter. Current clinical data are maintained in a database to facilitate research project PIs choosing patients appropriate to their protocols, and correlate their findings with clinical data. The Clinical core also facilitates the piloting of new research projects as opportunities arise, and core faculty carry out research on diagnosis and epidemiology. During the next funding period these research efforts will include: 1) development of standardized diagnostic criteria for general use in research classification; and 2) documentation of individual and familial variation in course of illness and the correlates of this variation. The latter will use the prospective, longitudinal data collected on the Maryland HD sample, ascertained during the first funding period. Finally, the clinical core is active in information transfer through publications, participation in lay organizations, and provision of clinical and research training in HD.

Project Start
1999-01-01
Project End
1999-12-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
19
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Faria, Andreia V; Ratnanather, J Tilak; Tward, Daniel J et al. (2016) Linking white matter and deep gray matter alterations in premanifest Huntington disease. Neuroimage Clin 11:450-460
Krause, Amanda; Mitchell, Claire; Essop, Fahmida et al. (2015) Junctophilin 3 (JPH3) expansion mutations causing Huntington disease like 2 (HDL2) are common in South African patients with African ancestry and a Huntington disease phenotype. Am J Med Genet B Neuropsychiatr Genet 168:573-85
Ross, Christopher A; Pantelyat, Alex; Kogan, Jane et al. (2014) Determinants of functional disability in Huntington's disease: role of cognitive and motor dysfunction. Mov Disord 29:1351-8
Hua, Jun; Unschuld, Paul G; Margolis, Russell L et al. (2014) Elevated arteriolar cerebral blood volume in prodromal Huntington's disease. Mov Disord 29:396-401
Unschuld, Paul G; Liu, Xinyang; Shanahan, Megan et al. (2013) Prefrontal executive function associated coupling relates to Huntington's disease stage. Cortex 49:2661-73
Unschuld, Paul G; Edden, Richard A E; Carass, Aaron et al. (2012) Brain metabolite alterations and cognitive dysfunction in early Huntington's disease. Mov Disord 27:895-902
Guo, Zhihong; Rudow, Gay; Pletnikova, Olga et al. (2012) Striatal neuronal loss correlates with clinical motor impairment in Huntington's disease. Mov Disord 27:1379-86
Fu, Jinrong; Jin, Jing; Cichewicz, Robert H et al. (2012) trans-(-)-?-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J Biol Chem 287:24460-72
Rosenblatt, Adam; Kumar, Brahma V; Mo, Alisa et al. (2012) Age, CAG repeat length, and clinical progression in Huntington's disease. Mov Disord 27:272-6
Ratovitski, Tamara; Chighladze, Ekaterine; Arbez, Nicolas et al. (2012) Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis. Cell Cycle 11:2006-21

Showing the most recent 10 out of 55 publications