The neurodegenerative diseases affecting the basal ganglia produce deficits in motor control, frequently in association with abnormalities of cognitive function. Parkinson's disease is one of the best understood of these conditions from a neuropharmacologic standpoint; the primary abnormality consists of loss of dopaminergic neurons in the substantia nigra. Improved understanding of the mechanisms of action of dopamine in the striatum through its two primary receptors, D1 and D2, has implications not only for the therapy of basal ganglia disease but also for the understanding of the actions of dopamine in other regions. We propose to investigate the hypothesis that the cellular localization of the D1 and D2 receptors to specific populations of striatal neurons is largely responsible for the specificity of effects produced by selective agonists and antagonists. We will use a newly developed technique for producing lesions with retrogradely transported toxins to explore not only receptor localization, but also changes in regulation of neurotransmitter and receptor expression in surviving neurons which are relevant to the study of neurodegenerative diseases in general.

Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
001910777
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Harrison, M B; Kumar, S; Hubbard, C A et al. (2001) Early changes in neuropeptide mRNA expression in the striatum following reserpine treatment. Exp Neurol 167:321-8
Smith, T S; Trimmer, P A; Khan, S M et al. (1997) Mitochondrial toxins in models of neurodegenerative diseases. II: Elevated zif268 transcription and independent temporal regulation of striatal D1 and D2 receptor mRNAs and D1 and D2 receptor-binding sites in C57BL/6 mice during MPTP treatment. Brain Res 765:189-97
Smith, T S; Bennett Jr, J P (1997) Mitochondrial toxins in models of neurodegenerative diseases. I: In vivo brain hydroxyl radical production during systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res 765:183-8
Creedon, D J; Tuttle, J B (1997) Synergistic increase in nerve growth factor secretion by cultured vascular smooth muscle cells treated with injury-related growth factors. J Neurosci Res 47:277-86
Miller, P J; Zaborszky, L (1997) 3-Nitropropionic acid neurotoxicity: visualization by silver staining and implications for use as an animal model of Huntington's disease. Exp Neurol 146:212-29
Jung, A B; Bennett Jr, J P (1996) Development of striatal dopaminergic function. I. Pre- and postnatal development of mRNAs and binding sites for striatal D1 (D1a) and D2 (D2a) receptors. Brain Res Dev Brain Res 94:109-20
Gaykema, R P; Zaborszky, L (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. II. Substantia nigra-ventral tegmental area projections to cholinergic neurons. J Comp Neurol 374:555-77
Zaborszky, L; Cullinan, W E (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons. J Comp Neurol 374:535-54
Jung, A B; Bennett Jr, J P (1996) Development of striatal dopaminergic function. III: Pre- and postnatal development of striatal and cortical mRNAs for the neurotrophin receptors trkBTK+ and trkC and their regulation by synaptic dopamine. Brain Res Dev Brain Res 94:133-43
Harrison, M B; Tissot, M; Wiley, R G (1996) Expression of m1 and m4 muscarinic receptor mRNA in the striatum following a selective lesion of striatonigral neurons. Brain Res 734:323-6

Showing the most recent 10 out of 32 publications