The formation of the vertebrate embryo begins in early development when one portion of the embryo, the ectoderm, is divided into neural and epidermal tissue on the basis of determinative cell-cell interactions. These events underlie the formation of the neural plate and tube, a process in which abnormalities during human development lead to syndromes such as neural tube defects, of which spina bifida is a well known example. These events have been difficult to study, however, because the molecules necessary for acquiring the neural fate in vertebrate embryos are unknown. To overcome this problem, an approach was taken based on the genetic analysis of neural development in Drosophila, where the product of the Notch gene appears to be a critical cell surface receptor mediating determinative cell-cell interactions. A frog homolog of this gene was isolated, suggesting that Notch-mediated, cell-cell interactions may also occur during early neurogenesis in vertebrates. The role of Notch will be studied by generating frog embryos that are mutant for the Notch protein. Moreover, Notch function will be further dissected by isolating ligands for the frog Notch receptor. The functional characterization of Notch and its ligands should lead to a better understanding of the mechanisms underlying the specification of neural tissue in vertebrate embryos.

Project Start
1999-01-01
Project End
1999-12-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
7
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
005436803
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier et al. (2014) V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82:138-50
Borowska, Joanna; Jones, Christopher T; Zhang, Han et al. (2013) Functional subpopulations of V3 interneurons in the mature mouse spinal cord. J Neurosci 33:18553-65
Levine, Ariel J; Lewallen, Kathryn A; Pfaff, Samuel L (2012) Spatial organization of cortical and spinal neurons controlling motor behavior. Curr Opin Neurobiol 22:812-21
Bonanomi, Dario; Chivatakarn, Onanong; Bai, Ge et al. (2012) Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell 148:568-82
Wang, Biao; Moya, Noel; Niessen, Sherry et al. (2011) A hormone-dependent module regulating energy balance. Cell 145:596-606
Bevins, Nicholas; Lemke, Greg; Reber, Michael (2011) Genetic dissection of EphA receptor signaling dynamics during retinotopic mapping. J Neurosci 31:10302-10
Alaynick, William A; Jessell, Thomas M; Pfaff, Samuel L (2011) SnapShot: spinal cord development. Cell 146:178-178.e1
Bai, Ge; Chivatakarn, Onanong; Bonanomi, Dario et al. (2011) Presenilin-dependent receptor processing is required for axon guidance. Cell 144:106-18
Grossmann, Katja S; Giraudin, Aurore; Britz, Olivier et al. (2010) Genetic dissection of rhythmic motor networks in mice. Prog Brain Res 187:19-37
Garcia-Campmany, Lidia; Stam, Floor J; Goulding, Martyn (2010) From circuits to behaviour: motor networks in vertebrates. Curr Opin Neurobiol 20:116-25

Showing the most recent 10 out of 23 publications