Herpes simplex virus type 1 (HSV-1) is ubiquitous in the human population and causes a variety of clinically significant acute diseases which can be life-threatening to immunocompromised individuals. HSV-1 also establishes life-long latent infections characterized by periodic reactivation, virus shedding and recurrent disease. The ability of the virus to establish latent infections which cannot be cured by the immune response or existing antiviral drugs is the reason that HSV-1 continues to be a significant human pathogen. In this proposal, three senior herpesvirologists will conduct a series of collaborative studies designed to elucidate the mechanism of establishment, maintenance and reactivation of HSV-1 latency by identifying the viral and cellular proteins and activities that result in latency and reactivation. Project 1 will focus on the state of viral chromatin during latent infection and will investigate the roles of ICPO and the latency-associated transcripts (LATs) in regulating the chromatization of latent genomes in collaboration with Projects 2 and 3. Project 1 will also examine the long-term immune response to HSV-1 and HSV-1 latent infection by defining the role of TLR2 signaling in the immune response. Project 2 will investigate the molecular and genetic mechanism by which clinical HSV-1 isolates become drug-resistant while retaining pathogenesis and permitting reactivation. In collaboration with Projects 1 and 3, Project 2 will also focus on how late gene expression is repressed by interferon gamma (IFN-y) and the LATs and later reactivated. Also in collaboration with Projects 1 and 3, Project 2 will examine the effects of IFN-y and newly discovered viral miRNAs on host gene expression. Project 3, in collaboration with Projects 1 and 2, will focus exclusively on the mechanisms of HSV-1, reactivation by attempting to identify the cellular proteins that mediate stress-induced reactivation, identifying the promoter elements in viral genes that respond to stress, and determining the effects of cdks on the activities of viral proteins induced by stress. Collectively, these studies will provide new insight into the mechanisms of HSV-1 latency and reactivation and define novel approaches to intervention in the HSV-1 life-cycle.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-A (35))
Program Officer
Wong, May
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Medicine
United States
Zip Code
Lutz, Gabriel; Jurak, Igor; Kim, Eui Tae et al. (2017) Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors. Viruses 9:
Pan, Dongli; Kaye, Stephen B; Hopkins, Mark et al. (2014) Common and new acyclovir resistant herpes simplex virus-1 mutants causing bilateral recurrent herpetic keratitis in an immunocompetent patient. J Infect Dis 209:345-9
Pan, Dongli; Flores, Omar; Umbach, Jennifer L et al. (2014) A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 15:446-56
Jurak, Igor; Hackenberg, Michael; Kim, Ju Youn et al. (2014) Expression of herpes simplex virus 1 microRNAs in cell culture models of quiescent and latent infection. J Virol 88:2337-9
Wang, Jennifer P; Bowen, Glennice N; Zhou, Shenghua et al. (2012) Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J Virol 86:2273-81
Jurak, Igor; Griffiths, Anthony; Coen, Donald M (2011) Mammalian alphaherpesvirus miRNAs. Biochim Biophys Acta 1809:641-53
Kramer, Martha F; Jurak, Igor; Pesola, Jean M et al. (2011) Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 417:239-47
Kramer, Martha F (2011) Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol Chapter 15:Unit 15.10
Jurak, Igor; Kramer, Martha F; Mellor, Joseph C et al. (2010) Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84:4659-72
Kushnir, Anna S; Davido, David J; Schaffer, Priscilla A (2010) Role of nuclear factor Y in stress-induced activation of the herpes simplex virus type 1 ICP0 promoter. J Virol 84:188-200

Showing the most recent 10 out of 57 publications