The Morphology Core is designed to function as a Core facility for the histopathology, immunocytochemistry, transmission electron microscopy, and image analysis requirements for the Program Project faculty. The Core facilities consist of personnel and equipment needed to perform the proposed studies in Projects 1-4. The Core will perform perfusion fixation and removal of spinal cords for light and electron microscopic examination. Core personnel will carry out immunocytochemical procedures, as well as develop new procedures for the visualization of additional antibodies. The Core will process tissues for plastic embedding for both light and electron microscopic analysis. High quality thin sections will be produced by personnel within the Core and stained for ultrastructural analysis. Established image analysis procedures will be utilized to quantitate spinal cord injury areas and volumes, as well as selective neuronal damage and white matter pathology. Finally, this Core will assist investigators in darkroom procedures and the generation of photographic slides are prints.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS038665-02
Application #
6478906
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
2001-07-01
Project End
2002-06-30
Budget Start
Budget End
Support Year
2
Fiscal Year
2001
Total Cost
$53,566
Indirect Cost
Name
University of Miami School of Medicine
Department
Type
DUNS #
City
Miami
State
FL
Country
United States
Zip Code
33146
Williams, Ryan R; Henao, Martha; Pearse, Damien D et al. (2015) Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transplant 24:115-31
Flora, Govinder; Joseph, Gravil; Patel, Samik et al. (2013) Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury. Cell Transplant 22:2203-17
Williams, Ryan R; Pearse, Damien D; Tresco, Patrick A et al. (2012) The assessment of adeno-associated vectors as potential intrinsic treatments for brainstem axon regeneration. J Gene Med 14:20-34
Hill, Caitlin E; Brodak, Danika M; Bartlett Bunge, Mary (2012) Dissociated predegenerated peripheral nerve transplants for spinal cord injury repair: a comprehensive assessment of their effects on regeneration and functional recovery compared to Schwann cell transplants. J Neurotrauma 29:2226-43
Maggio, Dominic M; Chatzipanteli, Katina; Masters, Neil et al. (2012) Acute molecular perturbation of inducible nitric oxide synthase with an antisense approach enhances neuronal preservation and functional recovery after contusive spinal cord injury. J Neurotrauma 29:2244-9
Hill, Caitlin E; Guller, Yelena; Raffa, Scott J et al. (2010) A calpain inhibitor enhances the survival of Schwann cells in vitro and after transplantation into the injured spinal cord. J Neurotrauma 27:1685-95
Fortun, Jenny; Hill, Caitlin E; Bunge, Mary Bartlett (2009) Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett 456:124-32
Talbott, Jason F; Cao, Qilin; Bertram, James et al. (2007) CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo. Exp Neurol 204:485-9
Golden, Kevin L; Pearse, Damien D; Blits, Bas et al. (2007) Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 207:203-17
Davis, Angela R; Lotocki, George; Marcillo, Alex E et al. (2007) FasL, Fas, and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury. J Neurotrauma 24:823-34

Showing the most recent 10 out of 53 publications