Prion diseases are neurodegenerative disorders of humans and animals caused by misfolding of prion protein (PrP). Diseases caused by prions can be transmitted to experimental animals whether their origin is genetic, infectious, or sporadic. The transmission of prion disease to humans by ingestion of bovine spongiform encephalopathy (BSE) prions has been documented. The spread of chronic wasting disease (CWD) through herds of deer and elk in North America is a serious concern and the susceptibility of humans to CWD prions is unknown. All prion diseases involve changes in the conformation of PrP from its benign cellular isoform, PrPc, to a disease-specific isoform, PrPSc. PrPSc is sufficient to transmit disease and its conformation enciphers prion strain properties. Appreciation of the biological significance of PrP came from incubation time studies in normal and transgenic mice. However, genes in addition to the prion protein gene (Prnp) also are important in prion replication and disease susceptibility but their identification has proven exceptionally difficult due to the length and expense of incubation time studies in mice. Similarly, synthetic prions created from recombinant PrP produced in E. coli cause disease in transgenic (Tg) mice but incubation times often exceed 500 days. Only a few cell lines were available that could be infected with prions, offering limited genetic diversity and sensitivity to only one or two prion strains. CNS stem cells can be isolated from adult or fetal brains of normal or Tg mice and grown in culture. Aggregates of these cells, called neurospheres, can be infected with prions and offer an exciting new technology for prion research. Efficiency of infection, spread from cell to cell, and rate of prion replication can be discriminated in neurosphere cultures and conformation dependent epitopes allow identification of individual cells with intracellular PrPSc. The four senior investigators on this Program Project application will apply this novel in vitro model to develop rapid and sensitive bioassays for prions, including those of humans and ungulates. The influence of conformational stability of infectious prions on the rate of prion propagation can be addressed more efficiently in culture than in mice. The ability to isolate neurosphere lines from any strain or Tg line offers the opportunity for genetic analysis of prion disease in culture and a system to screen candidates for the genes within chromosomal regions containing prion incubation time modifier loci. Neurosphere lines also offer a refinement over mice for the systems approach to identify gene networks perturbed by prion replication and pathogenic processes. CNS stem cells can be directed to differentiate to neurons and glia. Effects of infection on differentiation and effects of infection on differentiated cells will be evaluated in neurospheres and in """"""""matured brain spheres"""""""", emphasizing the Notch-Hes pathway.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS041997-10
Application #
8085701
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Wong, May
Project Start
2001-09-30
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2013-06-30
Support Year
10
Fiscal Year
2011
Total Cost
$1,401,699
Indirect Cost
Name
Mc Laughlin Research Institute
Department
Type
DUNS #
619471691
City
Great Falls
State
MT
Country
United States
Zip Code
59405
Chaverra, Marta; George, Lynn; Mergy, Marc et al. (2017) The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system. Dis Model Mech 10:605-618
Daude, Nathalie; Lee, Inyoul; Kim, Taek-Kyun et al. (2016) A Common Phenotype Polymorphism in Mammalian Brains Defined by Concomitant Production of Prolactin and Growth Hormone. PLoS One 11:e0149410
Wegmann, Susanne; Maury, Eduardo A; Kirk, Molly J et al. (2015) Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO J 34:3028-41
Anderson, Sarah R; Lee, Inyoul; Ebeling, Christine et al. (2015) Disrupted SOX10 function causes spongiform neurodegeneration in gray tremor mice. Mamm Genome 26:80-93
Park, Laibaik; Koizumi, Kenzo; El Jamal, Sleiman et al. (2014) Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke 45:1815-21
Lausted, Christopher; Lee, Inyoul; Zhou, Yong et al. (2014) Systems approach to neurodegenerative disease biomarker discovery. Annu Rev Pharmacol Toxicol 54:457-81
Stöhr, Jan; Condello, Carlo; Watts, Joel C et al. (2014) Distinct synthetic A? prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci U S A 111:10329-34
Gunn, Teresa M; Carlson, George A (2013) RML prions act through Mahogunin and Attractin-independent pathways. Prion 7:267-71
Flores, Mauricio; Glusman, Gustavo; Brogaard, Kristin et al. (2013) P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med 10:565-576
George, Lynn; Chaverra, Marta; Wolfe, Lindsey et al. (2013) Familial dysautonomia model reveals Ikbkap deletion causes apoptosis of Pax3+ progenitors and peripheral neurons. Proc Natl Acad Sci U S A 110:18698-703

Showing the most recent 10 out of 29 publications