This proposal is in response to three very exciting and recent findings. The most described six distinct mutations in the intermediate filament protein, GFAP that cause Alexander's disease. The GFAP mutations disrupt intermediate filament organization in astrocyte and also cause the formation of protein inclusions called Rosenthal Fibres, the main histopathological feature of the disease. The inclusions comprise GFAP as well as protein chaperones including, alphabeta-crystallin. Data from my lab identified alphabeta-crystallin as an important intermediate filament associated protein and when mutated it also causes diseases typified by filament inclusions. The second exciting finding is therefore- intermediate filaments require alphabeta-crystallin to function efficiently and without mishap by preserving the individuality of intermediate filaments within filament networks. The formation of intermediate filament networks in cells is an important question and leads es to the third exciting finding-the cytoplasmic spacing of GFAP filaments in astrocytes is set by vimentin. So, other intermediate filament proteins determine a key aspect of the GFAP network. Alexander's disease, like other human diseases caused by mutated intermediate filament proteins. This research programme will establish how GFAP forms networks via Specific Aim 1: To determine the influence of specific GFAP mutations (R79C, R79H, R239H, R239C, and R416W) upon the structural characteristics and properties of GFAP filaments in vitro.
Specific Aim 2; To determine the effect of the GFAP mutations upon filament associations and network formation in cells and tissues.
Specific Aim 3 : To determine the role of associated proteins, including chaperones in GFAP function in astrocytes. The long-term aim of this research is to identify feasible therapeutic strategies that can restore intermediate filament networks in diseased cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
1P01NS042803-01
Application #
6439424
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
2001-12-01
Project End
2006-11-30
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Durham
Department
Type
DUNS #
City
Durham
State
Country
United Kingdom
Zip Code
DH1 3HP
Sosunov, Alexander; Olabarria, Markel; Goldman, James E (2018) Alexander disease: an astrocytopathy that produces a leukodystrophy. Brain Pathol 28:388-398
Moody, Laura R; Barrett-Wilt, Gregory A; Sussman, Michael R et al. (2017) Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease. J Biol Chem 292:5814-5824
Sosunov, Alexander A; McKhann 2nd, Guy M; Goldman, James E (2017) The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun 5:27
Wang, Liqun; Hagemann, Tracy L; Messing, Albee et al. (2016) An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease. J Neurosci 36:1445-55
Heaven, Michael R; Flint, Daniel; Randall, Shan M et al. (2016) Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res 15:2265-82
Sosunov, Alexander A; McGovern, Robert A; Mikell, Charles B et al. (2015) Epileptogenic but MRI-normal perituberal tissue in Tuberous Sclerosis Complex contains tuber-specific abnormalities. Acta Neuropathol Commun 3:17
LaPash Daniels, Christine M; Paffenroth, Elizabeth; Austin, Elizabeth V et al. (2015) Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease. PLoS One 10:e0138132
Olabarria, Markel; Putilina, Maria; Riemer, Ellen C et al. (2015) Astrocyte pathology in Alexander disease causes a marked inflammatory environment. Acta Neuropathol 130:469-86
Minkel, Heather R; Anwer, Tooba Z; Arps, Kara M et al. (2015) Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia 63:2285-97
Jany, Paige L; Agosta, Guillermo E; Benko, William S et al. (2015) CSF and Blood Levels of GFAP in Alexander Disease(1,2,3). eNeuro 2:

Showing the most recent 10 out of 64 publications