Core C, the Laboratory Core, will provide infrastructure and experimental methodology for this Program Project Grant application. Core C includes a small animal surgical lab, a cellular and molecular biology lab, and an imaging analysis lab. Key portions of the experiments within the PPG will be performed in the Core that will furnish quality control and consistency for the experiments.
Aim 1 will provide a reproducible brain non-tumor angiogenesis (neo-vascularization) model in the mouse and the technology to deliver naked DNA constructs of interest to brain parenchyma. Project 3 (Boudreau) and Project 4 (Nishimura) will investigate the interaction of the homeobox genes and the integrins to develop abnormal cerebral microvessels, therefore, in vivo brain non-tumor angiogenesis model will provide a unique tool to examine whether the hypothesized mechanisms are rational.
Aim 2 will organize and process human blood samples, extract DNA, and perform ApoE genotyping, which will support the study of genetic polymorphisms from Project 1 (Young). In addition, Core C will process genotyping for the transgenic mice study in Project 4 The Core will assist in the design of the experiments, the writing of experimental proposals, solving methodological problems, and will provide a forum for discussing and interpreting results.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS044155-04
Application #
7553774
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
4
Fiscal Year
2006
Total Cost
$220,498
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Weinsheimer, Shantel; Bendjilali, Nasrine; Nelson, Jeffrey et al. (2016) Genome-wide association study of sporadic brain arteriovenous malformations. J Neurol Neurosurg Psychiatry 87:916-23
Zhang, Rui; Zhu, Wan; Su, Hua (2016) Vascular Integrity in the Pathogenesis of Brain Arteriovenous Malformation. Acta Neurochir Suppl 121:29-35
Potts, Matthew B; Lau, Darryl; Abla, Adib A et al. (2015) Current surgical results with low-grade brain arteriovenous malformations. J Neurosurg 122:912-20
Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke et al. (2015) A critical role for dendritic cells in the evolution of IL-1?-mediated murine airway disease. J Immunol 194:3962-9
Yang, Shun-Tai; Rodriguez-Hernandez, Ana; Walker, Espen J et al. (2015) Adult mouse venous hypertension model: common carotid artery to external jugular vein anastomosis. J Vis Exp :50472
Kremer, P H C; Koeleman, B P C; Pawlikowska, L et al. (2015) Evaluation of genetic risk loci for intracranial aneurysms in sporadic arteriovenous malformations of the brain. J Neurol Neurosurg Psychiatry 86:524-9
Wang, Liang; Shi, Wanchao; Su, Zhiguo et al. (2015) Endovascular treatment of severe acute basilar artery occlusion. J Clin Neurosci 22:195-8
Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke et al. (2015) TGF-?-Dependent Dendritic Cell Chemokinesis in Murine Models of Airway Disease. J Immunol 195:1182-90
Brand, Oliver J; Somanath, Sangeeta; Moermans, Catherine et al. (2015) Transforming Growth Factor-? and Interleukin-1? Signaling Pathways Converge on the Chemokine CCL20 Promoter. J Biol Chem 290:14717-28
Takayanagi, Takehiko; Crawford, Kevin J; Kobayashi, Tomonori et al. (2014) Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase. Clin Sci (Lond) 126:785-94

Showing the most recent 10 out of 126 publications