Mouse Physiology Core (Chamberlain,JS, P.I.) The Mouse Physiology Core provides advice and trainingon basic aspects of musclephysiologyand histopathological methodologies. This is a small, highly focused Core designed simply to provideexpert assistance to members of this PPG on a limited number of muscle physiology assays that are widley used in our studies of muscle disorders. It is not intended to be a research and devlopment core, and the limitedscope is in line with a very modest budget request. Experimental aspects of the Core are focused on providingassistance with viral vector injections into experimentalanimals, assisting with treadmillassays and performingmeasurements of contractile properties of key muscles, which constitutes a major hallmark of dystrophic pathophysiology and a sensitive index of overallmuscle health and function.

Public Health Relevance

There are few laboratories in the United States able to perform detailed analysis of muscle mechanical properties in conjunction with viral vector delivery to dystrophic animals. Our group has developed state-of- the-art protocols to enable detailed study of the functional effects of systemic gene delivery, and the Core allows non-specialists, such as moleuclar biologists, access to these informative, physiological analyses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS046788-08
Application #
8233487
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
8
Fiscal Year
2011
Total Cost
$40,295
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Whitehead, Nicholas P; Kim, Min Jeong; Bible, Kenneth L et al. (2015) A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy. Proc Natl Acad Sci U S A 112:12864-9
Muir, Lindsey A; Nguyen, Quynh G; Hauschka, Stephen D et al. (2014) Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle. Mol Ther Methods Clin Dev 1:14025
Parker, Maura H; Tapscott, Stephen J (2013) Expanding donor muscle-derived cells for transplantation. Curr Protoc Stem Cell Biol Chapter 2:Unit 2C.4
Johnson, Eric K; Zhang, Liwen; Adams, Marvin E et al. (2012) Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PLoS One 7:e43515
Tai, Phillip W L; Smith, Catherine L; Angello, John C et al. (2012) Analysis of fiber-type differences in reporter gene expression of ?-gal transgenic muscle. Methods Mol Biol 798:445-59
Gantz, Jay A; Palpant, Nathan J; Welikson, Robert E et al. (2012) Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells. PLoS One 7:e46971
Parker, Maura H; Loretz, Carol; Tyler, Ashlee E et al. (2012) Activation of Notch signaling during ex vivo expansion maintains donor muscle cell engraftment. Stem Cells 30:2212-20
Himeda, Charis L; Tai, Phillip W L; Hauschka, Stephen D (2012) Analysis of muscle gene transcription in cultured skeletal muscle cells. Methods Mol Biol 798:425-43
Suga, Tomohiro; Kimura, En; Morioka, Yuka et al. (2011) Muscle fiber type-predominant promoter activity in lentiviral-mediated transgenic mouse. PLoS One 6:e16908
Gonçalves, Manuel A F V; Janssen, Josephine M; Nguyen, Quynh G et al. (2011) Transcription factor rational design improves directed differentiation of human mesenchymal stem cells into skeletal myocytes. Mol Ther 19:1331-41

Showing the most recent 10 out of 32 publications