Presenilins (PS) form high molecular weight complexes with several other transmembrane proteins, termed NCT, Aph-1 and Pen-2 that are critical for generation of functional gamma-secretase complexes. However, the exact roles of these proteins, particularly for Aph-1 in mammals where two homologous genes exist, in regulation of gamma-secretase complex assembly remain uncertain. Although recent data support the notion that PS, NCT, Aph-1 and Pen-2 comprise the minimal gamma-secretase complex, the precise mechanism whereby these four components are assembled into the final active complex remain undefined. An interesting question is why there exist two mammalian Aph-1 genes, namely Aph-1a and Aph-1b, encoding three Aph-1 homologues called Aph-1aL, Aph-1aS and Aph-1b. Based on our recent find ings that the phenotype of Aph-1a null embryos resemble but not identical to those of Notch1 null or NCT null embryos, we hypothesize that Aph-1a is the principal mammalian Aph-1 homologue in presenilin-dependent gamma-secretase complexes required for embryonic development and that Aph-1 homologues are developmentally regulated. Thus, we plan in Aim 1 to address these issues by generation and characterization of Aph-1a null, Aph-1b null and Aph-1a+Aph-1b null mice. Based on our recent findings that the deletion of Aph-1a significantly reduces the levels of mature and immature NCT coupled with the finding that Aph-1 and NCT physically interact, we hypothesize that Aph-1 and NCT are required to regulate the stability of each other to form a stable precomplex for assembling PS and Pen-2. In such a model, we suggest that the three mammalian Aph-1 homologues (Aph-1aL, Aph-1aS and Aph-1b) define a set of six distinct functional gamma-secretase complexes. To test this model, we will generate and characterize a series of mice harboring different combination of Aph-1a and Aph-1b knockout allele and fibroblasts derived from these mice in Aim 2. Since we showed that Aph-1b null mice are viable and there is reduction in levels of PS and Pen-2 in brains of Aph-1-/- mice, we will test whether deletion of Aph-1b is sufficient to ameliorate Abeta deposition in brains of mutant APP;PS1 mice in Aim 3. Taken together, studies proposed here will address important mechanistic questions regarding physiological roles of mammalian Aph-1 homologues and critically evaluating Aph-1a and Aph-1b as therapeutic targets in efforts to ameliorate Abeta amyloidosis in AD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS047308-02
Application #
7312811
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
2
Fiscal Year
2006
Total Cost
$333,437
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Wang, Hui; Megill, Andrea; Wong, Philip C et al. (2014) Postsynaptic target specific synaptic dysfunctions in the CA3 area of BACE1 knockout mice. PLoS One 9:e92279
Savonenko, Alena V; Melnikova, Tatiana; Hiatt, Andrew et al. (2012) Alzheimer's therapeutics: translation of preclinical science to clinical drug development. Neuropsychopharmacology 37:261-77
Chiang, Po-Min; Fortna, Ryan R; Price, Donald L et al. (2012) Specific domains in anterior pharynx-defective 1 determine its intramembrane interactions with nicastrin and presenilin. Neurobiol Aging 33:277-85
Chiang, Po-Min; Wong, Philip C (2011) Differentiation of an embryonic stem cell to hemogenic endothelium by defined factors: essential role of bone morphogenetic protein 4. Development 138:2833-43
Li, Tong; Li, Yue-Ming; Ahn, Kwangwook et al. (2011) Increased expression of PS1 is sufficient to elevate the level and activity of ?-secretase in vivo. PLoS One 6:e28179
Chow, Vivian W; Savonenko, Alena V; Melnikova, Tatiana et al. (2010) Modeling an anti-amyloid combination therapy for Alzheimer's disease. Sci Transl Med 2:13ra1
Wang, Hui; Song, Lihua; Lee, Angela et al. (2010) Mossy fiber long-term potentiation deficits in BACE1 knock-outs can be rescued by activation of alpha7 nicotinic acetylcholine receptors. J Neurosci 30:13808-13
Pardossi-Piquard, Raphaƫlle; Yang, Seung-Pil; Kanemoto, Soshi et al. (2009) APH1 polar transmembrane residues regulate the assembly and activity of presenilin complexes. J Biol Chem 284:16298-307
Cheng, Haipeng; Vetrivel, Kulandaivelu S; Drisdel, Renaldo C et al. (2009) S-palmitoylation of gamma-secretase subunits nicastrin and APH-1. J Biol Chem 284:1373-84
Savonenko, A V; Melnikova, T; Laird, F M et al. (2008) Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci U S A 105:5585-90

Showing the most recent 10 out of 14 publications