Project 2, Spatial interactions of otolith mediated collic reflexes (Gdowski, PI), asks how the vestibular signals arising from otolith endorgans, which detect horizontal and vertical acceleration, are used to activate neck muscles that reflexively reorient the head. Cervical injury affects 1 million U.S. lives annually, yet we are just beginning to understand how postural reflexes that evolved to protect the neck are controlled. Progress has been hampered, in part, because of the complexity of the neck musculature and its multiple functions in reorienting gaze and reflexively stabilizing the head with respect to the body. Vestibulospinal (VS) pathways are richly innervated by converging otolith inputs. The signals carried by the VS pathways bilaterally and reciprocally activate neck muscles during static tilts and linear translations of the body. We hypothesize that neck muscle activity will exhibit spatial tuning when combinations of tilt and translation are imposed on the body sequentially throughout 3-D space. We further hypothesize that the spatial tuning of neck muscles is causally related to the spatial tuning of responses of vestibulospinal neurons. To test these hypotheses experiments will be carried out in squirrel monkeys in which the electromyography (EMG) of neck muscles and neural activity of VS pathways are recorded. Different combinations of tilt and translation will be imposed on the body throughout 3-D space. Initial experiments will determine if specific groups of neck muscles exhibit spatial tuning during tilts and translations in different directions. The second set of experiments will determine if VS neurons, recorded in the vestibular nuclei, exhibit spatial tuned responses during tilts and translations in different directions. VS neurons will be identified physiologically by antidromic stimulation. In addition, neck EMG activity and VS neuron activity will be recorded simultaneously so that spike-triggered averaging (SpikeTA) can be used to identify functional relationships between neural discharge and EMG activity. The spatial tuning of each neck muscle will be compared to the collective spatial tuning properties of sub-populations of VS neurons identified as functionally-related to the neck muscle (identified through SpikeTA). This analysis will be used to determine if the spatially-tuned neck EMG activity are causally related to the spatial properties of VS pathways. In the final experiments, the head will be allowed to move in the direction of translation while the responses of VS neurons are recorded. The directions of translation will be chosen based upon direction that maximally activates the neuron. These data will used us to determine how otolith signals are modified during the execution of collic reflexes. The results of these experiments are significant to our understanding of how otolith signals influence the orientation of the head during normal activities such as locomotion.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS048328-04
Application #
7615491
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
4
Fiscal Year
2008
Total Cost
$219,834
Indirect Cost
Name
University of Rochester
Department
Type
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Cai, Xinying; Kim, Soyoun; Lee, Daeyeol (2011) Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice. Neuron 69:170-82
Curtis, Clayton E; Lee, Daeyeol (2010) Beyond working memory: the role of persistent activity in decision making. Trends Cogn Sci 14:216-22
Dancause, Numa; Schieber, Marc H (2010) The impact of head direction on lateralized choices of target and hand. Exp Brain Res 201:821-35
Hwang, Jaewon; Kim, Soyoun; Lee, Daeyeol (2009) Temporal discounting and inter-temporal choice in rhesus monkeys. Front Behav Neurosci 3:9
Brown, E T; Luan, H; Gdowski, M J et al. (2009) Head movements produced during linear translations in unexpected directions. Conf Proc IEEE Eng Med Biol Soc 2009:7261-4
Kim, Soyoun; Hwang, Jaewon; Lee, Daeyeol (2008) Prefrontal coding of temporally discounted values during intertemporal choice. Neuron 59:161-72
Lee, Daeyeol; Rushworth, Matthew F S; Walton, Mark E et al. (2007) Functional specialization of the primate frontal cortex during decision making. J Neurosci 27:8170-3
Lee, Daeyeol; Seo, Hyojung (2007) Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex. Ann N Y Acad Sci 1104:108-22
Lee, Daeyeol; Schieber, Marc H (2006) Serial correlation in lateralized choices of hand and target. Exp Brain Res 174:499-509
Gardinier, Jennifer; Franco, Vanessa; Schieber, Marc H (2006) Interactions between lateralized choices of hand and target. Exp Brain Res 170:149-59