Tissue Processing and Imaging Core B The objective of the Tissue Processing and Imaging Core is to provide resources that will meet the needs of all investigators for confocal imaging, electron microscopy and immunohistochemical processing. The goals of the projects make it vital that critical tissue processing and analysis is performed in a consistent and uniform way, preferably in a single location. The location of this core is in the middles of a corridor surrounded by the labs of all faculty participants and therefore fully accessible to all projects. It will take advantage of the accumulated expertise of the core's director (Dr.Alvarez) in structural techniques and in the development of quantitative approaches and the electron microscopy technical help and expertise(Mr. Zerda). The core will provide technical help for the processing of the more sophisticated and demanding experiments with electron microscopy immunohistochemistry. In summary, the core will not only provide the instrumentation and human resources but also the expertise necessary for the successful completion of the most complex immunocytochemical and structural analyses proposed in all three projects

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS057228-04
Application #
8130978
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
4
Fiscal Year
2010
Total Cost
$60,405
Indirect Cost
Name
Wright State University
Department
Type
DUNS #
047814256
City
Dayton
State
OH
Country
United States
Zip Code
45435
Wang, Xueyong; McIntosh, J Michael; Rich, Mark M (2018) Muscle Nicotinic Acetylcholine Receptors May Mediate Trans-Synaptic Signaling at the Mouse Neuromuscular Junction. J Neurosci 38:1725-1736
Wang, Xueyong; Rich, Mark M (2018) Homeostatic synaptic plasticity at the neuromuscular junction in myasthenia gravis. Ann N Y Acad Sci 1412:170-177
Schultz, Adam J; Rotterman, Travis M; Dwarakanath, Anirudh et al. (2017) VGLUT1 synapses and P-boutons on regenerating motoneurons after nerve crush. J Comp Neurol 525:2876-2889
Wang, Xueyong; Pinter, Martin J; Rich, Mark M (2016) Reversible Recruitment of a Homeostatic Reserve Pool of Synaptic Vesicles Underlies Rapid Homeostatic Plasticity of Quantal Content. J Neurosci 36:828-36
Vincent, Jacob A; Wieczerzak, Krystyna B; Gabriel, Hanna M et al. (2016) A novel path to chronic proprioceptive disability with oxaliplatin: Distortion of sensory encoding. Neurobiol Dis 95:54-65
Romer, Shannon H; Deardorff, Adam S; Fyffe, Robert E W (2016) Activity-dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons. Physiol Rep 4:
Smilde, Hiltsje A; Vincent, Jake A; Baan, Guus C et al. (2016) Changes in muscle spindle firing in response to length changes of neighboring muscles. J Neurophysiol 115:3146-55
McGovern, Vicki L; Massoni-Laporte, Aurélie; Wang, Xueyong et al. (2015) Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ?7 SMA Mouse. PLoS One 10:e0132364
Vincent, Jacob A; Nardelli, Paul; Gabriel, Hanna M et al. (2015) Complex impairment of IA muscle proprioceptors following traumatic or neurotoxic injury. J Anat 227:221-30
Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier et al. (2014) V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82:138-50

Showing the most recent 10 out of 31 publications