Administrative Core This proposed Program Project and its Administrative Core, both led by Dr. Bernardo Rudy, will be based at the NYU School of Medicine (NYUSoM). With state-of-the-art facilities and access to all essential resources, NYUSoM is an ideal location to carry out the proposed aims of this PPG, and the members of the PPG benefit from the larger NYU scientific environment, including the Neuroscience Institute and the Center for Neural Science. The Administrative Core will provide the important structures and communication plans to promote the fast sharing of data to promote cohesion and synergy, to promote collaborations among the PIs and scientific personnel, to ensure that the resources generated by the Molecular and Transgenic Core are shared and optimally used, to oversee the administrative and financial management of the PPG, and to coordinate the evaluation of research progress and future directions by an External Advisory Board. Through these activities, the Administrative Core will help to maximize productivity and accelerate scientific progress. It will also enable productive and synergistic research to improve our understanding of cortical interneurons, with added insight into their development, anatomy, circuit integration, and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS074972-07
Application #
9849814
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2020-01-01
Budget End
2020-12-31
Support Year
7
Fiscal Year
2020
Total Cost
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Nigro, Maximiliano José; Hashikawa-Yamasaki, Yoshiko; Rudy, Bernardo (2018) Diversity and Connectivity of Layer 5 Somatostatin-Expressing Interneurons in the Mouse Barrel Cortex. J Neurosci 38:1622-1633
Mayer, Christian; Hafemeister, Christoph; Bandler, Rachel C et al. (2018) Developmental diversification of cortical inhibitory interneurons. Nature 555:457-462
Priya, Rashi; Paredes, Mercedes Francisca; Karayannis, Theofanis et al. (2018) Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism. Cell Rep 22:1695-1709
Godbole, Geeta; Shetty, Ashwin S; Roy, Achira et al. (2018) Hierarchical genetic interactions between FOXG1 and LHX2 regulate the formation of the cortical hem in the developing telencephalon. Development 145:
Quattrocolo, Giulia; Fishell, Gord; Petros, Timothy J (2017) Heterotopic Transplantations Reveal Environmental Influences on Interneuron Diversity and Maturation. Cell Rep 21:721-731
Muñoz, William; Tremblay, Robin; Levenstein, Daniel et al. (2017) Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355:954-959
Bandler, Rachel C; Mayer, Christian; Fishell, Gord (2017) Cortical interneuron specification: the juncture of genes, time and geometry. Curr Opin Neurobiol 42:17-24
Leffler, Abba E; Kuryatov, Alexander; Zebroski, Henry A et al. (2017) Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models. Proc Natl Acad Sci U S A 114:E8100-E8109
Wamsley, Brie; Fishell, Gord (2017) Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci 18:299-309
Wilson, Daniel E; Smith, Gordon B; Jacob, Amanda L et al. (2017) GABAergic Neurons in Ferret Visual Cortex Participate in Functionally Specific Networks. Neuron 93:1058-1065.e4

Showing the most recent 10 out of 36 publications