Sleep is pervasive, universal, irresistible, tightly regulated, and its loss impairs performance and cognition. Sleep is thought to perform essential restorative functions for the brain, and increasing evidence suggests that a key function may be to rebalance cellular changes triggered by plasticity during wake. This evidence is consistent with the hypothesis that sleep and wake may occur, be regulated, and perform their functions at the level of individual neurons. Recently, using multi-array recordings in freely moving rats, we have obtained direct evidence that sleep can occur locally within a group of cortical neurons, while the rest of the brain remains awake, and that such """"""""local sleep"""""""" increases with the duration of wake. In this proposal, we will use multi-array recordings to establish whether OFF periods during wake (""""""""local sleep"""""""") occur in mice, whether it increases with wake duration and whether it is associated with slow/theta waves in the local EEG and impaired performance, providing the rationale for the use of high density EEG in humans in Project III. We will then test whether local sleep, like sleep proper, is regulated by intense synaptic plasticity (""""""""tiredness"""""""") or instead by mere activity (""""""""fatigue""""""""). To do so we will first establish if local sleep increases with locally induced intense plasticity. We will induce local """"""""tiredness"""""""" in one sensorimotor cortex using both a learning task (reaching) and synaptic potentiation through electrical stimulation, and compare the effects on local sleep on the ipsi- vs. contralateral side. Next, we will determine the effects on local sleep of local opto-pharmacogenetic activation (intense activity with little plasticity), expected to lead to """"""""fatigue,"""""""" during both wake and sleep, again comparing the results to the contralateral side. Finally, we will use SBF-SEM to test whether there are ultrastructural signatures that distinguish between neurons that have been kept awake and those that have slept, and between intense plasticity (""""""""tiredness"""""""") and intense activity (""""""""fatigue""""""""). Altogether, these studies in mice will complement those in flies in Project I, which use similar methods. Together, they will establish if sleep and wake are regulated homeostatically at the single neuron level, and if they leave ultrastructural signatures that reflect their consequences and functions for individual cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
1P01NS083514-01A1
Application #
8794554
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$419,049
Indirect Cost
$140,611
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Bellesi, Michele; de Vivo, Luisa; Koebe, Samuel et al. (2018) Sleep and Wake Affect Glycogen Content and Turnover at Perisynaptic Astrocytic Processes. Front Cell Neurosci 12:308
Bourdon, Allen K; Spano, Giovanna Maria; Marshall, William et al. (2018) Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci Rep 8:11225
Bellesi, Michele; Haswell, John Douglas; de Vivo, Luisa et al. (2018) Myelin modifications after chronic sleep loss in adolescent mice. Sleep 41:
Honjoh, Sakiko; Sasai, Shuntaro; Schiereck, Shannon S et al. (2018) Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 9:2100
Darracq, Matthieu; Funk, Chadd M; Polyakov, Daniel et al. (2018) Evoked Alpha Power is Reduced in Disconnected Consciousness During Sleep and Anesthesia. Sci Rep 8:16664
Funk, Chadd M; Peelman, Kayla; Bellesi, Michele et al. (2017) Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves. J Neurosci 37:9132-9148
Marinelli, Lucio; Quartarone, Angelo; Hallett, Mark et al. (2017) The many facets of motor learning and their relevance for Parkinson's disease. Clin Neurophysiol 128:1127-1141
Siclari, Francesca; Tononi, Giulio (2017) Local aspects of sleep and wakefulness. Curr Opin Neurobiol 44:222-227
Boly, Melanie; Jones, Benjamin; Findlay, Graham et al. (2017) Altered sleep homeostasis correlates with cognitive impairment in patients with focal epilepsy. Brain 140:1026-1040
de Vivo, Luisa; Bellesi, Michele; Marshall, William et al. (2017) Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355:507-510

Showing the most recent 10 out of 29 publications