Relevance: Cognitive deficits are the most common adverse consequence observed in children with FetalAlcohol Spectrum Disorder (FASD). Currently, there are no effective pharmacotherapeutic interventions forlearning disabilities associated with FASD. However, there are a growing number of therapeutic agents invarious stages of preclincial development and clinical trials for treating cognitive deficits associated with avariety of neurologic and psychiatric illnesses. To our knowledge, there have been no systematicinvestigations to discern whether such agents could provide some benefit for treating the cognitive deficits ofpatients with FASD. We submit that an important first step towards addressing this question is to determinewhether a preclincial investigation of cognition-enhancing agents could provide the pharmacologic rationalefor subsequent clinical studies of promising agents in patients with FASD.Project Summary: The objective of this new research project is to investigate whether cognition-enhancingagents are effective in reversing fetal ethanol-induced deficits in hippocampal synaptic plasticity and learningusing a rat model of moderate prenatal ethanol exposure. Within the time and budgetary constraints of thisDevelopmental Project funding mechanism, we will limit this initial 'proof of concept' investigation to anassessment of the effects of a single cognition enhancing agent on the performance of fetal ethanol-exposedoffspring in two behavioral paradigms sensitive to moderate prenatal ethanol exposure. Subsequently, wewill examine the effects of this agent on two measures of hippocampal synaptic plasticity, the physiologicmechanisms thought to subserve learning, which are also sensitive to moderate prenatal ethanol exposure.The working hypothesis for this project is that the cognition-enhancing histamine H3 receptor antagonistABT-239 will diminish fetal ethanol-induced learning deficits by enhancing hippocampal synaptic plasticity infetal ethanol-exposed offspring. We will examine the effects of five different doses of ABT-239 on fetalethanol-induced deficits in contextual fear-conditioned learning (Aim 1A) and spatial navigation deficits in theMorris Water Task (Aim 1B). Then, we will conduct dose-response studies of the effects of ABT-239 on fetalethanol-induced deficits in long-term potentiation in vivo (Aim 2A) and activity-dependent potentiation ofelectrically evoked amino acid release (Aim 2B) in the dentate gyrus of dorsal hippocampal formation.Based on our hypothesis, we predict that ABT-239 will improve performance on the learning tasks in amanner that corresponds to improvements in one or both measures of hippocampal synaptic plasticity.The long-term objectives of this research program are to determine whether this experimental approach canprovide the pharmacologic rationale for initiating clinical trials of such agents for treating cognitive deficitsassociated with FASD and whether this rodent model of moderate prenatal ethanol exposure has utility forassessing the therapeutic potential of a variety of cognition-enhancing agents.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Exploratory Grants (P20)
Project #
1P20AA017068-01
Application #
7496298
Study Section
Special Emphasis Panel (ZAA1-AA (10))
Project Start
2008-07-01
Project End
2010-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
1
Fiscal Year
2008
Total Cost
$98,681
Indirect Cost
Name
University of New Mexico
Department
Type
DUNS #
868853094
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Varaschin, Rafael K; Allen, Nyika A; Rosenberg, Martina J et al. (2018) Prenatal Alcohol Exposure Increases Histamine H3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus. Alcohol Clin Exp Res 42:295-305
BolaƱos, Alfredo D; Coffman, Brian A; Candelaria-Cook, Felicha T et al. (2017) Altered Neural Oscillations During Multisensory Integration in Adolescents with Fetal Alcohol Spectrum Disorder. Alcohol Clin Exp Res 41:2173-2184
Gao, Lin; Wang, Jue; Stephen, Julia et al. (2016) Current Source Mapping by Spontaneous MEG and ECoG in Piglets Model. Biomed Signal Process Control 23:76-84
Gardiner, Amy S; Gutierrez, Hilda L; Luo, Li et al. (2016) Alcohol Use During Pregnancy is Associated with Specific Alterations in MicroRNA Levels in Maternal Serum. Alcohol Clin Exp Res 40:826-37
Kreitinger, Christine; Gutierrez, Hilda; Hamidovic, Ajna et al. (2016) The effect of prenatal alcohol co-exposure on neonatal abstinence syndrome in infants born to mothers in opioid maintenance treatment. J Matern Fetal Neonatal Med 29:783-8
Caldwell, Kevin K; Goggin, Samantha L; Labrecque, Matthew T et al. (2015) The impact of prenatal alcohol exposure on hippocampal-dependent outcome measures is influenced by prenatal and early-life rearing conditions. Alcohol Clin Exp Res 39:631-9
Gao, Lin; Sommerlade, Linda; Coffman, Brian et al. (2015) Granger causal time-dependent source connectivity in the somatosensory network. Sci Rep 5:10399
Staples, Miranda C; Porch, Morgan W; Savage, Daniel D (2014) Impact of combined prenatal ethanol and prenatal stress exposures on markers of activity-dependent synaptic plasticity in rat dentate gyrus. Alcohol 48:523-32
Bakhireva, Ludmila N; Leeman, Lawrence; Savich, Renate D et al. (2014) The validity of phosphatidylethanol in dried blood spots of newborns for the identification of prenatal alcohol exposure. Alcohol Clin Exp Res 38:1078-85
Varaschin, Rafael K; Rosenberg, Martina J; Hamilton, Derek A et al. (2014) Differential effects of the histamine H(3) receptor agonist methimepip on dentate granule cell excitability, paired-pulse plasticity and long-term potentiation in prenatal alcohol-exposed rats. Alcohol Clin Exp Res 38:1902-11

Showing the most recent 10 out of 37 publications