The University of Idaho will continue the IDeA INBRE Program by sponsoring statewide biomedical research at the BS/MS-granting institutions and two- and four-year colleges. With previous funding an unprecedented Network of research and educational collaborations among ten institutions in Idaho has been built. Successes include a doubling in the number of undergraduates pursing science and health-related careers (~1600 in 2004 to >3000 in 2008) and a >20-fold return on an eight year, ~$1.2 million seed grant investment that resulted in 65 extramural applications and over $26 million in new awards. The renewal proposes to continue/enhance successful programs to catalyze Idaho's transformation to competitiveness through core laboratory facilities, support services, faculty research, student educational and research opportunities, and community outreach. Also, prospects for collaboration across the Western IDeA region and with a CTSA are proposed. """"""""Sustainability"""""""" strategies and institutional commitments are in place to carry on the fundamental support for research infrastructure and biomedical research opportunities when the INBRE Program sunsets. The proposal has Five Specific Aims: 1. To strengthen Idaho's biomedical research infrastructure and expertise by building on the established INBRE network with the scientific theme of """"""""Cell Signaling"""""""";2. To provide support to Idaho faculty, post-doctoral fellows, and graduate students to increase the research base and capacity;3. To provide research opportunities to Idaho undergraduate students and serve as a pipeline for these students to continue in health research careers;4. To enhance the science and technology knowledge of Idaho's workforce;and 5. To expand Idaho research opportunities across the Western IDeA Region.
The Aims will be met with an Administrative Core and Statewide Steering Committee that bring talented leaders representing all institutions together to guide the Network;an External Advisory Committee with expertise in """"""""Cell Signaling"""""""", sustaining productive research programs, and higher education;and a Bioinformatics Core. Opportunities for faculty research at various participation levels will result in numerous intra- and inter-institution collaborations. Research faculty will be held to productivity standards and much emphasis will be placed on mentoring so that the best environment will be created for individuals to meet their goals. Finally, opportunities for students to participate in biomedical research will include undergraduate 2-week immersion labs, 10-week summer fellowships, academic year research, graduate student stipends, post-doctoral fellowships;and activities for K-12 science education.

Public Health Relevance

The INBRE Program has profoundly affected biomedical research at every level and in all regions of Idaho. Its continuation will stimulate research at educational institutions, provide state-of-the-art research facilities, and improve the caliber of scientific faculty. These activities impact public health by enhancing Idaho's competitiveness for research funds and by preparing the next generation of scientists. INBRE creates an environment for Idahoans with the talent and desire to solve health problems through research, to do so.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103408-13
Application #
8469059
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Program Officer
Arora, Krishan
Project Start
2001-09-30
Project End
2014-05-31
Budget Start
2013-04-01
Budget End
2014-05-31
Support Year
13
Fiscal Year
2013
Total Cost
$3,118,923
Indirect Cost
$289,482
Name
University of Idaho
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
075746271
City
Moscow
State
ID
Country
United States
Zip Code
83844
Boursier, Michelle E; Moore, Joseph D; Heitman, Katherine M et al. (2018) Structure-Function Analyses of the N-Butanoyl l-Homoserine Lactone Quorum-Sensing Signal Define Features Critical to Activity in RhlR. ACS Chem Biol 13:2655-2662
Rohn, Troy T; Mack, Jacob M (2018) Apolipoprotein E Fragmentation within Lewy Bodies of the Human Parkinson's Disease Brain. Int J Neurodegener Dis 1:
Culbertson, Vaughn L; Rahman, Shaikh E; Bosen, Grayson C et al. (2018) Implications of Off-Target Serotoninergic Drug Activity: An Analysis of Serotonin Syndrome Reports Using a Systematic Bioinformatics Approach. Pharmacotherapy 38:888-898
Misra, N; Wines, T F; Knopp, C L et al. (2018) Immunogenicity of a Staphylococcus aureus-cholera toxin A2/B vaccine for bovine mastitis. Vaccine 36:3513-3521
Sheng, Haiqing; Duan, Mingrui; Hunter, Samuel S et al. (2018) High-Quality Complete Genome Sequences of Three Bovine Shiga Toxin-ProducingEscherichia coliO177:H- (fliCH25) Isolates Harboring Virulentstx2and Multiple Plasmids. Genome Announc 6:
Mitchell, Diana M; Lovel, Anna G; Stenkamp, Deborah L (2018) Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina. J Neuroinflammation 15:163
Eberle, Sarah; Dezoumbe, Djeneba; McGregor, Rhegan et al. (2018) Hierarchical Assessment of Mutation Properties in Daphnia magna. G3 (Bethesda) 8:3481-3487
Gunderson, Mark P; Nguyen, Brandon T; Cervantes Reyes, Juan C et al. (2018) Response of phase I and II detoxification enzymes, glutathione, metallothionein and acetylcholine esterase to mercury and dimethoate in signal crayfish (Pacifastacus leniusculus). Chemosphere 208:749-756
Thyagaraj, Suraj; Pahlavian, Soroush Heidari; Sass, Lucas R et al. (2018) An MRI-Compatible Hydrodynamic Simulator of Cerebrospinal Fluid Motion in the Cervical Spine. IEEE Trans Biomed Eng 65:1516-1523
Misra, N; Pu, X; Holt, D N et al. (2018) Immunoproteomics to identify Staphylococcus aureus antigens expressed in bovine milk during mastitis. J Dairy Sci 101:6296-6309

Showing the most recent 10 out of 275 publications