- Project 1 An important regulator of cell physiology in eukaryotes is the eight-protein exocyst complex, which traffics subsets of intracellular vesicles for exocytosis to particular sites on the plasma membrane. Recent studies of mammalian epithelial cells have shown the exocyst is critical for several aspects of differentiation and morphogenesis, such as epithelial barrier integrity, cyst and tubule lumen formation, and assembly and signaling of primary cilia. However, what remain poorly understood are the molecular mechanisms by which epithelial cells direct the exocyst to accomplish so many different functions. Identifying and characterizing these mechanisms will be central to better understanding the development and physiology of mammalian epithelial tissues. We have recently established novel model systems to investigate the exocyst's regulation of cellular trafficking and tissue development, including the first tissue-specific exocyst conditional knockout mouse model. From our studies of the exocyst during renal development, and in collaboration with an Institute of Biogenesis Research COBRE-1 Project Leader, we have identified interesting parallels and variances of exocyst regulation during renal cystogenesis and pre-implantation blastocyst cavitation. Based on our preliminary findings, our hypothesis is that epithelial cells, at each stage of differentiation, display an array of regulatory mechanisms to temporally and spatially control exocyst-mediated trafficking, which is vital to normal epithelial tissue morphogenesis. We will test this hypothesis through the following Specific Aims: (1) Identify epithelial-specific regulatory mechanisms that redirect exocyst-mediated trafficking during mesenchymal-to- epithelial transition (MET). Here we use an induced pluripotent (iPS) cell model of MET, and in vivo models of MET during blastocyst formation and kidney development, to evaluate modifications of the exocyst that may induce the specificity of epithelial cargo and trafficking. (2) Determine if the exocyst directs the polarized exocytosis of solute carriers and aquaporin channels necessary for unidirectional fluid transport into growing epithelial lumens. We will use our novel exocyst conditional knockout mice, and cell lines established from these mice, to test if the exocyst mediates translocation of key solute transporters and aquaporin channels during cystogenesis, comparing differences during blastocyst cavitation and renal vesicle formation. (3) Identify the biochemical interactions that control the exocyst's trafficking to primary cilia in polarized epithelial cells and their importance to blastocyst morphogenesis. We will investigate which of the eight exocyst subunits localize to the cilia, test which are necessary for ciliogenesis, and screen for exocyst-binding proteins specifically in the cilia. We will also investigate the exocyst's role in primary cilia trafficking in the blastocyst. The anticipated outcome of the project is characterization of new genetic and biochemical mechanisms that mammalian epithelial tissues use to control polarized exocytosis during their differentiation, growth, and morphogenesis.

Public Health Relevance

- Project 1 Fundamental to embryonic development is the proper differentiation, growth, and shaping of epithelial tissues. Epithelia are sheets of cells that form a barrier between the inside of the body and the outside world, and, therefore, either cover the outer surface of an organism or line internal organs. Preliminary studies show that the eight-protein exocyst, a cellular trafficking complex, is necessary for mammalian epithelial biology. In this application, we propose experiments to identify molecular mechanisms by which epithelial cells utilize the exocyst complex to guide proper genesis and growth of epithelial tissues.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
2P20GM103457-06A1
Application #
8737527
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Hawaii
Department
Type
DUNS #
City
Honolulu
State
HI
Country
United States
Zip Code
96822
Alarcon, Vernadeth B; Marikawa, Yusuke (2018) ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation. Adv Anat Embryol Cell Biol 229:47-68
Ching, Travers; Garmire, Lana X (2018) Pan-cancer analysis of expressed somatic nucleotide variants in long intergenic non-coding RNA. Pac Symp Biocomput 23:512-523
Lee, Ryan W Y; Corley, Michael J; Pang, Alina et al. (2018) A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol Behav 188:205-211
Kim, Iris Q; Marikawa, Yusuke (2018) Embryoid body test with morphological and molecular endpoints implicates potential developmental toxicity of trans-resveratrol. Toxicol Appl Pharmacol 355:211-225
Polgar, Noemi; Fogelgren, Ben (2018) Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb Perspect Biol 10:
O'Brien, Lori L; Guo, Qiuyu; Bahrami-Samani, Emad et al. (2018) Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies. PLoS Genet 14:e1007181
Poirion, Olivier; Zhu, Xun; Ching, Travers et al. (2018) Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage. Nat Commun 9:4892
Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X (2018) Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data. J Proteome Res 17:337-347
Chaudhary, Kumardeep; Poirion, Olivier B; Lu, Liangqun et al. (2018) Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin Cancer Res 24:1248-1259
Poirion, Olivier B; Chaudhary, Kumardeep; Garmire, Lana X (2018) Deep Learning data integration for better risk stratification models of bladder cancer. AMIA Jt Summits Transl Sci Proc 2017:197-206

Showing the most recent 10 out of 135 publications