This proposal is for continued support for the multi-disciplinary Diabetes and Obesity Center at the University of Louisville. The central focus of the Center is to enable, promote and support research on the cardiovascular causes and consequences of diabetes and obesity. The second major aim of the program is to continue to provide mentoring and guidance to junior investigators in the Center. Specific objectives of the program are to: (1) Enhance and expand a thematic multi-disciplinary research center focused on diabetes and obesity;(2) Foster the research careers of junior investigators, leading to their development as independent principal investigators;(3) Develop a nationally-competitive program that will attract the best clinical and post-doctoral fellows, graduate students, and faculty;(4) Expand and bridge on-going research within the Center and further integrate current expertise into a thematically coherent program;(5) Promote collaborative interactions to build additional complementary research projects, both individual and multi-investigator;(6) Build upon existing research capabilities and core facilities to provide state-of-the-art infrastructure support;(7) Develop basic and clinical understanding of the molecular mechanisms of diabetes and obesity and how they contribute to the burden of cardiovascular disease;(8) Discover new and effective means for preventing and treating diabetes and obesity;and (9) Develop and implement a plan for the transition from COBRE support to independent funding. The five related projects of the junior investigators will: (1) Examine the effects of dietary carnosine on diabetes and obesity;(2) Assess the impact of particulate air pollution on insulin resistance;(3) Elucidate the role of eNOS in obesity;(4) Assess stem cell dysfunction in diabetes;and (5) Develop biomarkers for detecting atherothrombotic events in patients with type 2 diabetes. These investigations will be supported by state-of-the-art core facilities in flow cytometry, pathology and bioanalytical chemistry, imaging and physiology and animal model development and phenotyping. Continued support to the Center will strengthen the infrastructure of biomedical research at the University of Louisville and will positively impact the field of diabete and obesity research worldwide.

Public Health Relevance

Research supported by the Diabetes and Obesity Center at the University of Louisville will address two of the most significant health concerns in the nation An established, independent Diabetes and Obesity Center at the University of Louisville, with a well-supported cadre of new and established investigators, would create new knowledge and develop novel treatment and prevention modalities for these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103492-07
Application #
8711503
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Canto, Maria Teresa
Project Start
2008-09-26
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Louisville
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Louisville
State
KY
Country
United States
Zip Code
40202
Hosen, Mohammed Rabiul; Militello, Giuseppe; Weirick, Tyler et al. (2018) Airn Regulates Igf2bp2 Translation in Cardiomyocytes. Circ Res 122:1347-1353
Dassanayaka, Sujith; Zheng, Yuting; Gibb, Andrew A et al. (2018) Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload. Redox Biol 17:440-449
Dwenger, Marc M; Ohanyan, Vahagn; Navedo, Manuel F et al. (2018) Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation 25:
Jin, Lexiao; Lipinski, Alexandra; Conklin, Daniel J (2018) A Simple Method for Normalization of Aortic Contractility. J Vasc Res 55:177-186
Lindsey, Merry L; Bolli, Roberto; Canty Jr, John M et al. (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812-H838
Uchida, Shizuka; Jones, Steven P (2018) RNA Editing: Unexplored Opportunities in the Cardiovascular System. Circ Res 122:399-401
Liang, Yaqin; Lang, Anna L; Zhang, Jian et al. (2018) Exposure to Vinyl Chloride and Its Influence on Western Diet-Induced Cardiac Remodeling. Chem Res Toxicol 31:482-493
Trainor, Patrick J; Yampolskiy, Roman V; DeFilippis, Andrew P (2018) Wisdom of artificial crowds feature selection in untargeted metabolomics: An application to the development of a blood-based diagnostic test for thrombotic myocardial infarction. J Biomed Inform 81:53-60
Zafar, Nagma; Krishnasamy, Sathya S; Shah, Jasmit et al. (2018) Circulating angiogenic stem cells in type 2 diabetes are associated with glycemic control and endothelial dysfunction. PLoS One 13:e0205851
Hoetker, David; Chung, Weiliang; Zhang, Deqing et al. (2018) Exercise alters and ?-alanine combined with exercise augments histidyl dipeptide levels and scavenges lipid peroxidation products in human skeletal muscle. J Appl Physiol (1985) :

Showing the most recent 10 out of 110 publications