The objective of Proteomics Core B is to provide state of the art mass spectrometry-based proteomic capabilities, dedicated analytical support, and mentorship to the investigators funded through the SC COBRE in Oxidants, Redox Balance, and Stress Signaling (Redox COBRE). Mass spectrometry is a powerful technology enabling unbiased discovery of the effects of drugs/ligands, genetic alterations, and disease on changes in protein expression, protein interactions, and post-translational modifications. Post-translational modifications encode the nutrient and stress status of the cell and mediate acute responses to ligand stimulation and changes in redox status by influencing protein function, half-life, and localization. The MUSC Mass Spectrometry Facility and Proteomics Center have an extensive array of instrumentation for protein characterization and expertise in applying proteomic technologies to biomedical research endeavors. During the last funding period acquisition of an Orbitrap Elite mass spectrometer, purchased through a shared instrumentation grant, enabled us for the first time to apply quantitative proteomic approaches to the detection of complex post-translational modifications. In ongoing collaborative projects with COBRE investigators and participants in the Redox Center, Proteomics Core B is utilizing the Orbitrap Elite to examine the global effects of altered redox status on protein expression, phosphorylation, acetylation, and thiol modifications and to characterize the sites of phosphorylation, S-glutathionylation, tyrosine nitration, and protein crosslinking on redox-sensitive target proteins.
The specific aims of Proteomics Core B are: 1) to assist COBRE investigators with experimental design including sample preparation strategies and choice of specific proteomic approach, 2) to customize data acquisition and analysis to address the goals of the individual projects, and 3) to provide mentorship and training in the applications of proteomic technologies for future projects. Access to these capabilities and expertise to push the available technology forward is critical to the proposed research projects. The experimental capabilities and infrastructure established with COBRE investigators are made available to investigators at MUSC and other institutions in South Carolina that utilize the MUSC Mass Spectrometry Facility. Our goals are to provide COBRE investigators with access to instrumentation and expertise to advance their research and contribute to the success of our promising junior faculty.

Public Health Relevance

The goal of the Proteomics Core is to develop infrastructure and enabling mass spectrometry-based technologies for NIH funded investigators to advance their biomedical research endeavors. Expertise, mentorship, and dedicated technical assistance is provided for COBRE funded junior faculty utilizing proteomics to obtain compelling preliminary data for grant applications.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-RCB-6 (C2))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
United States
Zip Code
Fernandes, Renata S; Silva, Juliana O; Mussi, Samuel V et al. (2018) Nanostructured Lipid Carrier Co-loaded with Doxorubicin and Docosahexaenoic Acid as a Theranostic Agent: Evaluation of Biodistribution and Antitumor Activity in Experimental Model. Mol Imaging Biol 20:437-447
Angel, Peggi M; Mehta, Anand; Norris-Caneda, Kim et al. (2018) MALDI Imaging Mass Spectrometry of N-glycans and Tryptic Peptides from the Same Formalin-Fixed, Paraffin-Embedded Tissue Section. Methods Mol Biol 1788:225-241
DeHart, David N; Fang, Diana; Heslop, Kareem et al. (2018) Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol 148:155-162
Angel, Peggi M; Norris-Caneda, Kim; Drake, Richard R (2018) In Situ Imaging of Tryptic Peptides by MALDI Imaging Mass Spectrometry Using Fresh-Frozen or Formalin-Fixed, Paraffin-Embedded Tissue. Curr Protoc Protein Sci 94:e65
Zhang, Jie; Ye, Zhi-Wei; Singh, Shweta et al. (2018) An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic Biol Med 120:204-216
Li, Xiaoyang; Peterson, Yuri K; Inks, Elizabeth S et al. (2018) Class I HDAC Inhibitors Display Different Antitumor Mechanism in Leukemia and Prostatic Cancer Cells Depending on Their p53 Status. J Med Chem 61:2589-2603
Kim, Mi Jin; Vargas, Marcelo R; Harlan, Benjamin A et al. (2018) Nitration and Glycation Turn Mature NGF into a Toxic Factor for Motor Neurons: A Role for p75NTR and RAGE Signaling in ALS. Antioxid Redox Signal 28:1587-1602
Fang, Diana; Maldonado, Eduardo N (2018) VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation. Adv Cancer Res 138:41-69
Klauber-DeMore, Nancy; Schulte, Bradley A; Wang, Gavin Y (2018) Targeting MYC for triple-negative breast cancer treatment. Oncoscience 5:120-121
Chatterjee, Shilpak; Daenthanasanmak, Anusara; Chakraborty, Paramita et al. (2018) CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell Metab 27:85-100.e8

Showing the most recent 10 out of 109 publications