The goal of the Molecular Computational Core Facility (MCCF) is to provide the greater CBSD community at the University of Montana and its Project Investigators with a discovery platform that integrates computational chemistry and bioinformatics with laboratory-derived data sets. To accomplish this, the MCCF offers the computational resources, training, and expertise to help investigators design and implement research strategies that involve theoretical modeling using MCCF resources. The MCCF has particular expertise in structure-based ligand design, molecular dynamics and ligand docking. The Core supports computational quantum mechanics calculations and a broad array of other computational tools and methods to provide investigators with options to reach their individual research goals in an efficient and cost-effective manner. Collaboration is at the core of research strategies designed in the MCCF. That is, the theoretical nature of research in the MCCF usually necessitates experimental validation, underpinning its long-standing philosophy to promote iterative computational and experimental methods.
The specific aims of the MCCF are: 1, to provide informed guidance to help investigators in the greater CBSD community at the University of Montana to formulate efficient computational strategies optimized for their individual research needs, and to give stable access to the computational tools, training, and expertise that will continue to help investigators attain their research goals in a timely and cost-effective manner; 2, to maintain current Core infrastructure, and to appropriately expand the Core's computational capabilities to meet the research needs of investigators; 3, to collaborate with COBRE Project Investigators and research Cores to design and implement integrated computational and biophysical strategies to realize their research goals; and 4, to continue to reach out to the greater University of Montana community by offering workshops highlighting the capabilities of specific computational tools, and by offering intense individual training through the CBSD Core Fellowship Program, and access to the National XSEDE supercomputer network.
Showing the most recent 10 out of 108 publications