Mitochondrial dysfunction is a pathological feature of many neurodegenerative diseases. We recently discovered that mutations in the mitochondrial protein ATAD3A (ATPase family, AAA domain containing 3A) cause HAREL- YOON syndrome, a disease characterized by peripheral neuropathy, optic atrophy, cardiomyopathy, and brain malformation. ATAD3A is implicated in other neurological genetic diseases, including hereditary spastic paraplegia, and congenital pontocerebellar hypoplasia, with abnormal cholesterol metabolism suggested as an underlying cause. Although ATAD3A is known to influence mitochondrial biology and lipid metabolism, how mutations in ATAD3A cause disease is unknown. There is an urgent need to fill this knowledge gap in order to prevent or treat ATAD3A-associated and other mitochondrial diseases, most of which have no known cure. Our long-term goal is to discover new therapeutic targets and strategies for mitochondrial diseases. The objective of our proposal is to uncover the mechanisms by which ATAD3A controls mitochondrial functions, using Drosophila and ATAD3A patient-derived induced pluripotent stem cells. Our CENTRAL HYPOTHESIS is that ATAD3A regulates mitochondrial membrane lipid homeostasis, and thus mitochondrial membrane dynamics, mitochondrial DNA (mtDNA) replication, and lipid metabolism, based on the following compelling evidence. First, ATAD3A plays a role in the formation of ER-mitochondria contact sites (EMCS) which are essential for import and synthesis of phospholipids. Second, ATAD3A is essential for importing cholesterol into mitochondria as well as maintaining cholesterol-rich mitochondria membrane structures. Lastly, patients carrying ATAD3A mutations exhibit increased 3-methylglutaconic acid excretion, which is often caused by a deficiency in mitochondrial respiratory complexes secondary to defects in cardiolipin remodeling. We expect that mechanistic insight into the consequences of ATADA3 mutations derived from our studies will reveal unanticipated therapeutic targets for prevention or treatment of a variety of mitochondrial diseases. We will test our central hypothesis by performing the following Specific Aims: (1) Elucidate how ATAD3A regulates mitochondrial membrane dynamics; (2) Determine how ATAD3A promotes mtDNA replication in neurons; and (3) Determine how ATAD3A regulates proper heart function. Upon conclusion of our studies, we expect to uncover how ATAD3A modulates mitochondria membrane dynamics, biogenesis, and heart function. Understanding how ATAD3A links diverse aspects of mitochondrial biology is expected to have a positive impact by revealing the molecular basis, as well as novel therapeutic targets and strategies for ATAD3A-associated diseases and other disorders caused by mitochondrial dysfunction.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
2P20GM103636-06
Application #
9573341
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
6
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Bhaskaran, Shylesh; Pharaoh, Gavin; Ranjit, Rojina et al. (2018) Loss of mitochondrial protease ClpP protects mice from diet-induced obesity and insulin resistance. EMBO Rep 19:
Siefert, Joseph C; Clowdus, Emily A; Goins, Duane et al. (2018) Profiling DNA Replication Timing Using Zebrafish as an In Vivo Model System. J Vis Exp :
Borga, Chiara; Park, Gilseung; Foster, Clay et al. (2018) Simultaneous B and T cell acute lymphoblastic leukemias in zebrafish driven by transgenic MYC: implications for oncogenesis and lymphopoiesis. Leukemia :
Wren, Jonathan D (2018) Algorithmically outsourcing the detection of statistical errors and other problems. EMBO J 37:
Georgescu, Constantin; Wren, Jonathan D (2018) Algorithmic identification of discrepancies between published ratios and their reported confidence intervals and P-values. Bioinformatics 34:1758-1766
Snider, Timothy A; Richardson, Arlan; Stoner, Julie A et al. (2018) The Geropathology Grading Platform demonstrates that mice null for Cu/Zn-superoxide dismutase show accelerated biological aging. Geroscience 40:97-103
Sansam, Courtney G; Pietrzak, Katarzyna; Majchrzycka, Blanka et al. (2018) A mechanism for epigenetic control of DNA replication. Genes Dev 32:224-229
Arriens, Cristina; Wren, Jonathan D; Munroe, Melissa E et al. (2017) Systemic lupus erythematosus biomarkers: the challenging quest. Rheumatology (Oxford) 56:i32-i45
Duan, Hongliang; Li, Yu; Arora, Daleep et al. (2017) Discovery of a Benzamide Derivative That Protects Pancreatic ?-Cells against Endoplasmic Reticulum Stress. J Med Chem 60:6191-6204
de Castro, Rodrigo O; Previato, Luciana; Goitea, Victor et al. (2017) The chromatin-remodeling subunit Baf200 promotes homology-directed DNA repair and regulates distinct chromatin-remodeling complexes. J Biol Chem 292:8459-8471

Showing the most recent 10 out of 57 publications