Over the past twenty years there has been a tremendous growth in the application of microfabrication technologies that are used to produce computer chips towards the development of microfluidic devices that can be used to study biological systems. Microchip based fluidic systems have been used to analyze the contents of single cells, measure the effect of channel size on ATP release from red blood cells as well as the study of the behavior and growth of C. elegans. The Microfabrication and Microfluidics Core (MMC) will provide the resources and personnel for the production of microfabricated devices that can be used by project investigators for their studies. It will also assist in the development of bioanalytical assays for small molecules and proteins. For the projects described in this COBRE proposal, the initial emphasis will be on the development of devices for trapping and imaging C. elegans, and manipulating zebrafish embryos. The devices developed in this core laboratory will make it possible for project investigators to explore the effect of genetic modifications of model organisms by fluorescence imaging in conjunction with the Genetics and Model Organism Core and the Synthetic Molecular Probes for in vivo Imaging core. In addition, microfluidics systems for maintaining tissue slices and cells will be developed and used for measurement of the release of neurotransmitters and other biomolecules. Lastly, basic fabrication methods will be available for the production of micron and submicron particles, channels and reservoirs for biophysical studies related to the molecular analysis of disease pathways.
The Microfabrication and Microfluidics Core will develop lab-on-a-chip devices that can be used to facilitate investigations of the biochemistry pathways of diseases including neurological disorders, cardiovascular disease, cancer and pulmonary disorders.
Showing the most recent 10 out of 134 publications