Most eukaryotic cells secrete numerous membrane-derived vesicles of 30-150 nm in size termed exosomes. As an emerging mechanism for cell-to-cell communication, exosomes have been recently found to play important roles in a wide range of biological processes, including cancer development and metastasis. For instance, increasing evidences support the cancer-derived exosomes can reprogram the behavior of recipient cells to promote tumor growth and metastasis. Despite the significance of exosomes, our understanding of their biogenesis, molecular classification, and biological functions remain very limited. One of the challenges is to analyze exosomes released from single cells. Because cells in a tumor are known to be remarkably heterogeneous, single-cell analysis of exosomes is crucial to understanding their pathological roles in cancer. However, current ?gold standard? methods can only perform ensemble measurements of exosomes released from a large cell population because of their poor isolation yield, insufficient analysis sensitivity and low throughput. In this proposal, the PI aims to develop for the first time a high-throughput single cell exosome analysis system (SCEAS) capable of probing the secretion and molecular composition of exosomes at the single cell level. The goal will be achieved via two specific aims: 1) Develop a microfluidic digital barcode system for multiplexed, ultrasensitive exosome profiling; and 2) Establish a Single Cell Exosome Analysis System (SCEAS) for quantitative profiling of exosomes derived from single cancer cells. Success of the work will yield a key tool to enable the studies of heterogeneous exosome release by tumor cells at the single cell level, which would facilitate better understanding of intercellular signaling pathways underlying cancer development, metastasis, and drug resistance.
Showing the most recent 10 out of 134 publications