Understanding the Neural Basis of Working IVIemory to Improve WIVI Function The purpose of this proposal is to conduct basic research to understand the neural correlates of working memory. The second purpose is to then apply our findings to improve working memory function in the healthy aging and in those with traumatic brain injury through novel neurostimulation protocols. First, we will use functional neuroimaging (fMRI) to test two contradictory theoretical viewpoints regarding the role of the posterior parietal cortex in working memory. It is important to understand the role of the posterior parietal cortex to appropriately design therapeutic studies for improving working memory. Thus, the results from the first experiments will guide the design and predicted outcomes ofthe applied experiments in which transcranial direct current stimulation (tDCS) is applied to special populations. TDCS is thought to improve cognitive function through several mechanisms. The tDCS technique involves the application of a safe, low level of electrical current to the scalp. The electrical current passes into the cortex and can transiently increase or decrease the likelihood of neurononal firing in the cortex, and it may also increase the activity in white matter tracts to overcome white matter damage. We predict that anodal (+) tDCS applied to the prefrontal and/or parietal cortices, will improve visuospatial and verbal working memory function by increasing the underactivity of cortical activations in the healthy aging. In a longitudinal study of working memory, we will apply parietal, prefrontal or alternating parietal/prefrontal anodal tDCS to separate groups of healthy aging individuals. The duration of improvement will be tested by bringing participants in for a final behavioral session one month after their final tDCS session. The second set of applied experiments will test whether tDCS can also be used effectively to improve cognitive function in participants with mild or moderate traumatic brain injury. In these participants, there is is often white matter damage. We will conduct experiments to see if alternating parietal/prefrontal tDCS stimulation will improve visuospatial or verbal working memory in those with traumatic brain injury.

Public Health Relevance

Working memory underlies cognition. This proposal improves our understanding ofthe neural correlates of working memory. These findings are then applied to improve working memory function in two large special populations: the healthy aging and those with traumatic brain injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
4P20GM103650-05
Application #
9103151
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Nevada Reno
Department
Type
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Du, Juan; Zhang, Yifan; Xue, Yongbo et al. (2018) Diurnal protein oscillation profiles in Drosophila head. FEBS Lett 592:3736-3749
Retter, Talia L; Jiang, Fang; Webster, Michael A et al. (2018) Dissociable effects of inter-stimulus interval and presentation duration on rapid face categorization. Vision Res 145:11-20
Myers, Logan; Perera, Hiran; Alvarado, Michael G et al. (2018) The Drosophila Ret gene functions in the stomatogastric nervous system with the Maverick TGF? ligand and the Gfrl co-receptor. Development 145:
Harrison, Matthew T; Strother, Lars (2018) Visual recognition of mirrored letters and the right hemisphere advantage for mirror-invariant object recognition. Psychon Bull Rev 25:1494-1499
Singh, Mahendra; Miura, Pedro; Renden, Robert (2018) Age-related defects in short-term plasticity are reversed by acetyl-L-carnitine at the mouse calyx of Held. Neurobiol Aging 67:108-119
Cortés-López, Mariela; Gruner, Matthew R; Cooper, Daphne A et al. (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19:8
Clark, David A; Kohler, Donovan; Mathis, America et al. (2018) Tracking Drosophila Larval Behavior in Response to Optogenetic Stimulation of Olfactory Neurons. J Vis Exp :
Killebrew, Kyle W; Gurariy, Gennadiy; Peacock, Candace E et al. (2018) Electrophysiological correlates of encoding processes in a full-report visual working memory paradigm. Cogn Affect Behav Neurosci 18:353-365
Chen, Wenfeng; Werdann, Michelle; Zhang, Yong (2018) The auxin-inducible degradation system enables conditional PERIOD protein depletion in the nervous system of Drosophila melanogaster. FEBS J 285:4378-4393
Cooper, Daphne A; Cortés-López, Mariela; Miura, Pedro (2018) Genome-Wide circRNA Profiling from RNA-seq Data. Methods Mol Biol 1724:27-41

Showing the most recent 10 out of 94 publications