Loss of endothelial cell (EC) barrier function is important in the development of indirect acute lung injury (ALI). We have shown, in a novel murine model of hemorrhage (shock) with a subsequent septic challenge caused by cecal ligation and performation (CLP), that neutrophil (PMN) interactions with resident pulmonary cells are central to this pathology. In ALI, unresolved inflammation elicits a pathological process with loss of EC barrier integrity and impaired lung function. EC growth factors, Angiopoietin (Ang)-i and 2, under physiological conditions, maintain vascular homeostasis through competitive interactions wdth the t3T:osine kinase receptor, Tie2, expressed on ECs. Ang-1/Tie2 binding has been shown to stabilize vessels and stimulate down stream pro-survival/anti-inflammatory signaling, in contrast, Ang-2, released from storage granules of activated ECs, destabilizes vessels. Recent findings report that plasma Ang-2 levels are significantly elevated in patients that develop ALI. We find similar elevation in the lungs and plasma in our shock/CLP model, and we have found that depletion of PMNs prior to shock abrogates Ang-2 elevation. We propose the following central hypothesis: Ang-2 causes loss of pulmonary EC barrier function in ALI due to shock/CLP, initiated by EC interaction with shock-primed PMNs. We propose the following specific aims:
Aim 1 will determine the kinetics of change in Ang-1:Ang-2 and Ang-2 expression and re-synthesis as well as its relationship to changes in indices of inflammation. We will use Ang-2 (si)RNA to suppress lung tissue expression, Ang-2 protein specific inhibition, and Ang-1 competitive inhibition of Ang-2/Tie2 binding to assess the contribution of Ang-2 release in shock priming for the development of ALI.
Aim 2 will determine mechanisms by which Ang-2 changes pulmonary EC phenotype/activation in response to plasma from mice with ALI/ARDS.
Aim 3 will determine mechanisms by which Ang-2 mediates changes in EC phenotype /activation in cultured mouse ECs following co-culture with shock-primed PMNs. The studies in this proposal will provide novel insights into the mechanisms of PMN associated, Ang-2 mediated ALI and will elucidate pathways that hold potential for therapeutic intervention.

Public Health Relevance

Acute lung injury (ALI) is a progressive syndrome with significant mortality in trauma patients. Identifying the cellular interactions and protein mediators involved in the development of indirect ALI is a critical step in the discovery of effective therapies. This project will identity mechanisms by which endothelial growth factor, Angiopoietin-2, and shock primed neutrophils contribute to lung edema in the development of ALI.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-TWD-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ocean State Research Institute, Inc.
United States
Zip Code
Baird, Grayson L; Archer-Chicko, Christine; Barr, R Graham et al. (2018) Lower DHEA-S levels predict disease and worse outcomes in post-menopausal women with idiopathic, connective tissue disease- and congenital heart disease-associated pulmonary arterial hypertension. Eur Respir J 51:
Shah, Nishant R; Blankstein, Ron; Villines, Todd et al. (2018) Coronary CTA for Surveillance of Cardiac Allograft Vasculopathy. Curr Cardiovasc Imaging Rep 11:26
Monaghan, Sean F; Banerjee, Debasree; Chung, Chun-Shiang et al. (2018) Changes in the process of alternative RNA splicing results in soluble B and T lymphocyte attenuator with biological and clinical implications in critical illness. Mol Med 24:32
Potz, Brittany A; Scrimgeour, Laura A; Pavlov, Vasile I et al. (2018) Extracellular Vesicle Injection Improves Myocardial Function and Increases Angiogenesis in a Swine Model of Chronic Ischemia. J Am Heart Assoc 7:
Zhou, Yang; He, Chuan Hua; Yang, Daniel S et al. (2018) Galectin-3 Interacts with the CHI3L1 Axis and Contributes to Hermansky-Pudlak Syndrome Lung Disease. J Immunol 200:2140-2153
Zhao, Haifeng; Dennery, Phyllis A; Yao, Hongwei (2018) Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 314:L544-L554
Chambers, Eboni; Rounds, Sharon; Lu, Qing (2018) Pulmonary Endothelial Cell Apoptosis in Emphysema and Acute Lung Injury. Adv Anat Embryol Cell Biol 228:63-86
Sellke, Nicholas; Kuczmarski, Alex; Lawandy, Isabella et al. (2018) Enhanced coronary arteriolar contraction to vasopressin in patients with diabetes after cardiac surgery. J Thorac Cardiovasc Surg 156:2098-2107
Fallon, Eleanor A; Biron-Girard, Bethany M; Chung, Chun-Shiang et al. (2018) A novel role for coinhibitory receptors/checkpoint proteins in the immunopathology of sepsis. J Leukoc Biol :
Aldosari, Sarah; Awad, Maan; Harrington, Elizabeth O et al. (2018) Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology. Antioxidants (Basel) 7:

Showing the most recent 10 out of 96 publications