Regenerative medicine is the field of R&D and medical practice focused on repairing and replacing tissues and organs damaged by injury, disease and aging-associated degenerative changes. While most human tissues and organs have limited or no regenerative capacity, numerous diverse invertebrates and non- mammalian vertebrates readily repair and replace lost and damaged organs, including the heart, limbs, spinal cord and kidney, throughout their lives. Comparative studies of these animal models provide the opportunity to define the core cellular and molecular mechanisms underlying repair and regeneration processes. The ability to carry out research on regenerative processes in diverse animal models requires specialized facilities and expertise. The COBRE Comparative Animal Models (CAM) Core builds on MDIBL?s unique and increasingly important expertise in comparative animal biology to provide the animal resources necessary to grow and sustain the Kathryn Davis Center for Regenerative Biology and Medicine. During Phase I COBRE funding, the Core provided husbandry as well as associated specialized services such as embryo microinjection and transgenesis for multiple diverse animal models including zebrafish, Polypterus, medaka and C. elegans. The Core also provided the facilities and expertise needed to support the recruitment of two new Project Leaders using salamanders and Drosophila as model systems. Over the past four years, Core- supported research projects resulted in the publication of 26 papers by Phase I Project Leaders and 25 papers by non-COBRE faculty. This research in turn resulted in multiple firsts for the MDIBL including the discovery of three lead small molecules for regenerative medicine applications, six U.S. and international patent applications, one issued U.S. patent and the launch of the spinoff company Novo Biosciences. The overarching goal of the CAM Core is to support the research programs of COBRE Phase II Project Leaders and other investigators in the Davis Center and to help ensure the Center?s long-term sustainability. This will be accomplished by 1) providing Project Leaders and Davis Center faculty with animal husbandry resources as well as specialized experimental services, 2) establishing authentication services for genetic animal models and cell lines, and 3) expanding user fee-supported services to ensure long-term Core sustainability.
Showing the most recent 10 out of 76 publications