The association between human microbiomes and health has garnered a great deal of scientific and popular attention. By allowing rapid and inexpensive characterization of microbial community composition, modern sequencing has uncovered enormous microbial diversity. Determining the presence versus absence of microbes is insufficient however; we need to understand how dysfunctional microbiomes form and how to repair them. A critical step toward the goal of promoting the assembly of microbial communities that support health is to predict their temporal dynamics. There remains, however, a critical gap: untangling causation from correlation. Simply stated, we are currently unable to interpret the biological and clinical relevance buried within the extreme complexity of microbial communities. Our long-term goal is to advance microbiome research by a) developing new models that capture causality in microbial interactions; and b) developing tools to interpret the relevance of microbial interactions for human health. Before the development of data analysis pipelines, we need to establish theoretical underpinnings upon which to base the methods. We have three aims focused on developing such theory. (1) Develop molecule-mediated models of microbial interactions. Existing statistical approaches for modeling the temporal dynamics of microbiomes are built on assumptions that are rarely valid for microbial communities and thus can be profoundly misleading. Misspecified models may mislead researchers toward poor prediction of dynamics, or worse, prescription of a misguided treatment that enhances rather than inhibits a microbial species of interest?a major problem if the species of interest is a pathogen. We will assess the predictive power of statistical time-series models given realistic molecule-mediated interactions in synthetic data and develop new statistical methods that account for time-varying interactions. (2) Predict stability of a microbiome. Even when interactions that govern microbial population dynamics are well estimated, these interactions may not be directly relevant to human health. Rather, we may want to predict higher-level properties of a microbiome such as its resilience. Resilience?the ability of a microbiome to maintain and recover function in the face of perturbations such as by antibiotics or opportunistic pathogens?is related to the mathematical concept of stability. We will develop new measures to capture the resilience of the microbiome. (3) Predict other high-level microbiome properties. Often a property of the microbiome in its entirety is of interest, such as the ability to regulate pH or metabolize a toxin. Borrowing from population genetic theory, we will develop novel mathematical models to predict the temporal dynamics of traits associated with the microbiome. Together, these aims will greatly enhance our understanding and interpretation of the temporal dynamics of microbial communities, and lay the foundation for our capacity to influence their trajectories toward desired outcomes. This research will provide a critical step in enhancing our ability to assess risk, design synthetic microbial communities to perform tasks, and manipulate microbiomes to promote health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
2P20GM104420-06A1
Application #
10026005
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Idaho
Department
Type
DUNS #
075746271
City
Moscow
State
ID
Country
United States
Zip Code
83844
Damase, Tulsi Ram; Miura, Tanya A; Parent, Christine E et al. (2018) Application of the Open qPCR Instrument for the in Vitro Selection of DNA Aptamers against Epidermal Growth Factor Receptor and Drosophila C Virus. ACS Comb Sci 20:45-54
Baumgaertner, Bert; Carlisle, Juliet E; Justwan, Florian (2018) The influence of political ideology and trust on willingness to vaccinate. PLoS One 13:e0191728
Miller, Craig R; Van Leuven, James T; Wichman, Holly A et al. (2018) Selecting among three basic fitness landscape models: Additive, multiplicative and stickbreaking. Theor Popul Biol 122:97-109
Baumgaertner, Bert O; Fetros, Peter A; Krone, Stephen M et al. (2018) Spatial opinion dynamics and the effects of two types of mixing. Phys Rev E 98:022310
Garry, Daniel J; Ellington, Andrew D; Molineux, Ian J et al. (2018) Viral attenuation by engineered protein fragmentation. Virus Evol 4:vey017
Bull, James J; Christensen, Kelly A; Scott, Carly et al. (2018) Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities. Antibiotics (Basel) 7:
Patel, Jagdish Suresh; Brown, Celeste J; Ytreberg, F Marty et al. (2018) Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations. PLoS Comput Biol 14:e1005974
Patel, Jagdish Suresh; Ytreberg, F Marty (2018) Fast Calculation of Protein-Protein Binding Free Energies Using Umbrella Sampling with a Coarse-Grained Model. J Chem Theory Comput 14:991-997
Buzbas, Erkan Ozge; Verdu, Paul (2018) Inference on admixture fractions in a mechanistic model of recurrent admixture. Theor Popul Biol 122:149-157
Ferguson, Jake M; Buzbas, Erkan Ozge (2018) Inference from the stationary distribution of allele frequencies in a family of Wright-Fisher models with two levels of genetic variability. Theor Popul Biol 122:78-87

Showing the most recent 10 out of 29 publications