Diabetes is one of a broad range of human diseases and disorders that are directly associated with endoplasmic reticulum (ER) malfunction. This malfunction is termed """"""""ER stress"""""""" (ERS) and results from the accumulation of luminal unfolded/misfolded proteins. Cellular response to ERS is regulated by the Unfolded Protein Response (UPR) and will result in either ERS attenuation or apoptosis. ERS leading to cell death is often observed in type 2 diabetes when pancreatic p-cells are placed under high insulin production loads to maintain euglycemia. This proposal is focused on understanding the function and activity of the soluble 78 kDa Glucose-Regulated protein (GRP78) that serves as a molecular chaperone to facilitate protein folding in the ER lumen. GRP78 is a master regulator of UPR activity and thus plays a significant role in determining cellular response to ERS. To accomplish this objective we will utilize a novel family of small molecules called FlexHets that are now known to target GRP78 function. The focus in AIM 1 is to determine if FlexHet inhibition of GRP78 activity enhances insulin receptor signaling and response.
AIM 2 is focused on determining the molecular basis for FlexHet binding to GRP78 as a means to understand GRP78 function and regulation by small molecule therapeutics.
AIM 3 uses in vivo mouse models to determine if GRP78 inhibition modulates ERS response and signaling in obese vs. non-obese diabetic mice. Thus, our approach is to combine a range of in vitro and in vivo methods to develop a holistic model of GRP78 function by utilizing FlexHets as a targeted molecular tool to inhibit GRP78 function and activity. GRP78 has been previously shown to play a key role in insulin signaling using heterozygous knockout mice so the current studies are aimed at understanding the molecular basis for this observation and vetting GRP78 as a viable candidate for therapeutic intervention in the treatment of type 2 diabetes.

Public Health Relevance

This project investigates how a protein involved in the onset of type 2 diabetes functions at the molecular level. Through these studies we aim to gain insights into how the protien, called GRP78, functions in the diabetic state and determine if the protein is a viable target for new therapeutics in the future.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
9P20GM104934-06
Application #
8521832
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Project Start
Project End
Budget Start
2012-09-10
Budget End
2013-06-30
Support Year
6
Fiscal Year
2012
Total Cost
$222,000
Indirect Cost
$72,000
Name
University of Oklahoma Health Sciences Center
Department
Type
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Wang, Bing; Li, Pui-Kai; Ma, Jian-Xing et al. (2018) Therapeutic Effects of a Novel Phenylphthalimide Analog for Corneal Neovascularization and Retinal Vascular Leakage. Invest Ophthalmol Vis Sci 59:3630-3642
Shin, Younghwa; Moiseyev, Gennadiy; Petrukhin, Konstantin et al. (2018) A novel RPE65 inhibitor CU239 suppresses visual cycle and prevents retinal degeneration. Biochim Biophys Acta Mol Basis Dis 1864:2420-2429
Fu, Shuhua; Dong, Shuqian; Zhu, Meili et al. (2018) VEGF as a Trophic Factor for Müller Glia in Hypoxic Retinal Diseases. Adv Exp Med Biol 1074:473-478
Orock, Albert; Logan, Sreemathi; Deak, Ferenc (2018) Munc18-1 haploinsufficiency impairs learning and memory by reduced synaptic vesicular release in a model of Ohtahara syndrome. Mol Cell Neurosci 88:33-42
Vadvalkar, Shraddha S; Matsuzaki, Satoshi; Eyster, Craig A et al. (2017) Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION. J Biol Chem 292:4423-4433
He, Xuemin; Cheng, Rui; Park, Kyoungmin et al. (2017) Pigment epithelium-derived factor, a noninhibitory serine protease inhibitor, is renoprotective by inhibiting the Wnt pathway. Kidney Int 91:642-657
Deng, Guotao; Moran, Elizabeth P; Cheng, Rui et al. (2017) Therapeutic Effects of a Novel Agonist of Peroxisome Proliferator-Activated Receptor Alpha for the Treatment of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 58:5030-5042
Du, Mei; Phelps, Eric; Balangue, Michael J et al. (2017) Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration. Invest Ophthalmol Vis Sci 58:4375–4383
Jung, Dongju; Xu, Yuechi; Sun, Zhongjie (2017) Induction of anti-aging gene klotho with a small chemical compound that demethylates CpG islands. Oncotarget 8:46745-46755
Shin, Younghwa; Moiseyev, Gennadiy; Chakraborty, Dibyendu et al. (2017) A Dominant Mutation in Rpe65, D477G, Delays Dark Adaptation and Disturbs the Visual Cycle in the Mutant Knock-In Mice. Am J Pathol 187:517-527

Showing the most recent 10 out of 101 publications