Boise State University has an emerging record of excellence in matrix biology research and application to many of the most challenging health concerns facing our nation. To date, we have been limited by a centralized mechanism to leverage new collaborations efficiently into new research discoveries. To capitalize on the broad, diverse research base that exists at Boise State, we propose to create the Center of Biomedical Research Excellence (COBRE) in Matrix Biology. The primary goals ofthe COBRE in Matrix Biology are 1) to support junior investigators, 2) to enhance the productivity of established scientists, 3) to facilitate collaboration between both junior and established researchers with those bringing non-traditional strategies to the table, and 4) to build biomedical research infrastructure at Boise State University. Major programmatic emphases of the COBRE in Matrix Biology will be to support the analysis of animal models of relevance to cell-extracellular matrix interactions in disease progression and tissue repair/regeneration and to provide access to research instrumentation and technical support. Through the Administrative Core, the COBRE in Matrix Biology will sponsor career development of junior investigators, establishment of new collaborations behween established investigators, activities that will promote the exchange of information, ideas and reagents between COBRE members, and to engage non-members who are doing meritorious research within the thematic focus ofthe COBRE in Matrix Biology. The Administrative Core will implement a Pilot Project grant program to provide funding to young investigators and to established investigators who propose to apply their expertise to matrix biology.
Health disorders involving the extracellular matrix of tissues and organs are a main cause of pain and suffering leading to diminished quality of life. The successful completion of the proposed aims will improve research infrastructure and career development of junior investigators, to address the mission of 17 Institutes at NIH that prioritize cell-extracellular matrix interactions.
Showing the most recent 10 out of 87 publications