Boise State University has an emerging record of excellence in matrix biology research and application to many of the most challenging health concerns facing our nation. To date, we have been limited by a centralized mechanism to leverage new collaborations efficiently into new research discoveries. To capitalize on the broad, diverse research base that exists at Boise State, we propose to create the Center of Biomedical Research Excellence (COBRE) in Matrix Biology. The primary goals ofthe COBRE in Matrix Biology are 1) to support junior investigators, 2) to enhance the productivity of established scientists, 3) to facilitate collaboration between both junior and established researchers with those bringing non-traditional strategies to the table, and 4) to build biomedical research infrastructure at Boise State University. Major programmatic emphases of the COBRE in Matrix Biology will be to support the analysis of animal models of relevance to cell-extracellular matrix interactions in disease progression and tissue repair/regeneration and to provide access to research instrumentation and technical support. Through the Administrative Core, the COBRE in Matrix Biology will sponsor career development of junior investigators, establishment of new collaborations behween established investigators, activities that will promote the exchange of information, ideas and reagents between COBRE members, and to engage non-members who are doing meritorious research within the thematic focus ofthe COBRE in Matrix Biology. The Administrative Core will implement a Pilot Project grant program to provide funding to young investigators and to established investigators who propose to apply their expertise to matrix biology.

Public Health Relevance

Health disorders involving the extracellular matrix of tissues and organs are a main cause of pain and suffering leading to diminished quality of life. The successful completion of the proposed aims will improve research infrastructure and career development of junior investigators, to address the mission of 17 Institutes at NIH that prioritize cell-extracellular matrix interactions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM109095-01
Application #
8653269
Study Section
Special Emphasis Panel (ZGM1)
Project Start
2014-08-01
Project End
2019-05-31
Budget Start
2014-08-01
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Boise State University
Department
Type
DUNS #
City
Boise
State
ID
Country
United States
Zip Code
83725
Misra, N; Wines, T F; Knopp, C L et al. (2018) Immunogenicity of a Staphylococcus aureus-cholera toxin A2/B vaccine for bovine mastitis. Vaccine 36:3513-3521
Thompson, William R; Yen, Sherwin S; Uzer, Gunes et al. (2018) LARG GEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage. Bone 107:172-180
Misra, N; Pu, X; Holt, D N et al. (2018) Immunoproteomics to identify Staphylococcus aureus antigens expressed in bovine milk during mastitis. J Dairy Sci 101:6296-6309
Graham, David M; Andersen, Tomas; Sharek, Lisa et al. (2018) Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J Cell Biol 217:895-914
Hollar, Katherine A; Ferguson, Daniel S; Everingham, John B et al. (2018) Quantifying wear depth in hip prostheses using a 3D optical scanner. Wear 394-395:195-202
Nhu Lam, Mila; Dudekula, Dastagiri; Durham, Bri et al. (2018) Insights into ?-ketoacyl-chain recognition for ?-ketoacyl-ACP utilizing AHL synthases. Chem Commun (Camb) 54:8838-8841
Robertson, Jake C; Jorcyk, Cheryl L; Oxford, Julia Thom (2018) DICER1 Syndrome: DICER1 Mutations in Rare Cancers. Cancers (Basel) 10:
Frahs, Stephanie M; Oxford, Julia Thom; Neumann, Erica E et al. (2018) Extracellular Matrix Expression and Production in Fibroblast-Collagen Gels: Towards an In Vitro Model for Ligament Wound Healing. Ann Biomed Eng 46:1882-1895
King, Matthew D; Long, Thomas; Pfalmer, Daniel L et al. (2018) SPIDR: small-molecule peptide-influenced drug repurposing. BMC Bioinformatics 19:138
LaFoya, Bryce; Munroe, Jordan A; Pu, Xinzhu et al. (2018) Src kinase phosphorylates Notch1 to inhibit MAML binding. Sci Rep 8:15515

Showing the most recent 10 out of 87 publications