Liver injury of different etiologies leads to a wound healing process involving activation of hepatic stellate cells (HSCs). However, an ongoing hepatocyte injury and inflammation results in an uncontrolled activation and proliferation of HSCs and development of hepatic fibrosis leading to cirrhosis and even hepatocellular cancer. Despite the advances made, gaps remain in our understanding of the mechanisms involved in the process of HSC transformation from quiescent to activated phenotype. Recently, we discovered that the phosphodiesterase 4 (PDE4) subfamily of enzymes play a pathogenic role in the development of cholestatic liver injury and fibrosis. Notably, PDE4s are not present in quiescent HSCs and are rapidly induced upon activation in vitro. Further, the PDE4 specific inhibitor, rolipram, effectively attenuates ?SMA, collagen expression and accompanying morphological changes in HSCs. PDE4 is the largest sub-family among cAMP- hydrolyzing PDEs, which tightly regulate the levels of cellular cAMP. cAMP, through its effector molecules protein kinase A (PKA) and Exchange Protein directly Activated by cAMP (EPAC), has been shown to down- regulate cytokine induced fibrogenic genes in non-hepatic cells. Hence, we hypothesize that induction of PDE4 expression and activity plays a causal role in HSC activation by decreasing cAMP-PKA/EPAC activities and promoting fibrogenic signaling. We postulate that during HSC activation, promoter associated epigenetic changes and post-translational modifications play a significant role in the regulation of PDE4 expression and activity. We also postulate that PDE4 inhibition will restore PKA/EPAC activities and attenuate TGF?-Smad signaling through: (i) inactivation of relevant MAPKs; and (ii) de-repressing PPAR? leading to decreased expression of ?SMA and Col1A1. Importantly, inhibition of PDE4 activity may be a significant therapeutic approach for liver fibrosis.
The specific aims of this proposal are to: 1) Determine the role of PDE4 in the regulation of fibrogenic signaling in HSCs; 2) Determine promoter-associated epigenetic modifications contributing to the induction of PDE4 isoforms during HSC activation; and 3) Determine the post-translational modifications (PTMs) relevant for PDE4 isoform function during HSC activation. Importantly, the results of this COBRE-funded project will provide proof-of-principle and mechanistic rationale for in vivo translational studies (R01) to examine PDE4 targeted strategies for prevention and treatment of hepatic fibrosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM113226-04
Application #
9673155
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
4
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Louisville
Department
Type
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Ghosh Dastidar, Shubha; Warner, Jeffrey B; Warner, Dennis R et al. (2018) Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules 8:
Gosney, Julie A; Wilkey, Daniel W; Merchant, Michael L et al. (2018) Proteomics reveals novel protein associations with early endosomes in an epidermal growth factor-dependent manner. J Biol Chem 293:5895-5908
Atay, Safinur; Wilkey, Daniel W; Milhem, Mohammed et al. (2018) Insights into the Proteome of Gastrointestinal Stromal Tumors-Derived Exosomes Reveals New Potential Diagnostic Biomarkers. Mol Cell Proteomics 17:495-515
Schuster, Susanne; Johnson, Casey D; Hennebelle, Marie et al. (2018) Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J Lipid Res 59:1597-1609
Lang, Anna L; Chen, Liya; Poff, Gavin D et al. (2018) Vinyl chloride dysregulates metabolic homeostasis and enhances diet-induced liver injury in mice. Hepatol Commun 2:270-284
Pandit, Harshul; Li, Yan; Li, Xuanyi et al. (2018) Enrichment of cancer stem cells via ?-catenin contributing to the tumorigenesis of hepatocellular carcinoma. BMC Cancer 18:783
Das, Samarendra; Rai, Anil; Mishra, D C et al. (2018) Statistical Approach for Gene Set Analysis with Trait Specific Quantitative Trait Loci. Sci Rep 8:2391
He, Liqing; Prodhan, Md Aminul Islam; Yuan, Fang et al. (2018) Simultaneous quantification of straight-chain and branched-chain short chain fatty acids by gas chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1092:359-367
Vatsalya, Vatsalya; Kong, Maiying; Cave, Matthew C et al. (2018) Association of serum zinc with markers of liver injury in very heavy drinking alcohol-dependent patients. J Nutr Biochem 59:49-55
Prodhan, Md Aminul Islam; Yin, Xinmin; Kim, Seongho et al. (2018) Surface fitting for calculating the second dimension retention index in comprehensive two-dimensional gas chromatography mass spectrometry. J Chromatogr A 1539:62-70

Showing the most recent 10 out of 68 publications