Bioinformatics is a key element of the overall systems biology program proposed for the Center for Translational Pediatric Research (CTPR) and is an essential component of the Research Projects proposed by the COBRE Project Leaders. The Systems Biology Bioinformatics Core will be a new core created to meet the research needs of the proposed COBRE Center. A team of five bioinformaticians will be assembled that have broad expertise in all research areas covered by the CTPR. The Systems Biology Bioinformatics Core will coordinate closely with the CTPR Proteomics and Genomics Cores to provide a one-of-a-kind systems biology approach for pediatric disease research. This coordinated core structure will allow bioinformatics to be integrated into a cross-disciplinary framework capable of supporting the entire range of technologies and expertise needed for an effective systems biology approach for clinical and basic research. Close interaction between the Systems Biology Bioinformatics Core and COBRE Center Project Leaders will also lead to new innovations in research that will benefit future COBRE investigators as well as the broader campus research community. Opportunities and training in systems biology bioinformatics will be provided by the Core Directors to CTPR members, the campus and researchers in Arkansas.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Arkansas Children's Hospital Research Institute
Little Rock
United States
Zip Code
Zhang, Xin; Zhang, Suping; Liu, Xingui et al. (2018) Oxidation resistance 1 is a novel senolytic target. Aging Cell :e12780
Lo, Dennis; Kennedy, Joshua L; Kurten, Richard C et al. (2018) Modulation of airway hyperresponsiveness by rhinovirus exposure. Respir Res 19:208
Salinas, Eduardo; Gupta, Arundhati; Sifford, Jeffrey M et al. (2018) Conditional mutagenesis in vivo reveals cell type- and infection stage-specific requirements for LANA in chronic MHV68 infection. PLoS Pathog 14:e1006865
Kennedy, Joshua L; Koziol-White, Cynthia J; Jeffus, Susanne et al. (2018) Effects of rhinovirus 39 infection on airway hyperresponsiveness to carbachol in human airways precision cut lung slices. J Allergy Clin Immunol 141:1887-1890.e1
Barham, Caroline; Fil, Daniel; Byrum, Stephanie D et al. (2018) RNA-Seq Analysis of Spinal Cord Tissues from hPFN1G118V Transgenic Mouse Model of ALS at Pre-symptomatic and End-Stages of Disease. Sci Rep 8:13737
Kriss, Crystina L; Gregory-Lott, Emily; Storey, Aaron J et al. (2018) In Vivo Metabolic Tracing Demonstrates the Site-Specific Contribution of Hepatic Ethanol Metabolism to Histone Acetylation. Alcohol Clin Exp Res 42:1909-1923
Dinwiddie, Darrell L; Denson, Jesse L; Kennedy, Joshua L (2018) Role of the Airway Microbiome in Respiratory Infections and Asthma in Children. Pediatr Allergy Immunol Pulmonol 31:236-240
Byrum, Stephanie D; Loughran, Allister J; Beenken, Karen E et al. (2018) Label-Free Proteomic Approach to Characterize Protease-Dependent and -Independent Effects of sarA Inactivation on the Staphylococcus aureus Exoproteome. J Proteome Res 17:3384-3395
Mao, Xiao W; Byrum, Stephanie; Nishiyama, Nina C et al. (2018) Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis. Int J Mol Sci 19:
Vlachos, Adrianna; Osorio, Diana S; Atsidaftos, Evangelia et al. (2018) Increased Prevalence of Congenital Heart Disease in Children With Diamond Blackfan Anemia Suggests Unrecognized Diamond Blackfan Anemia as a Cause of Congenital Heart Disease in the General Population: A Report of the Diamond Blackfan Anemia Registry. Circ Genom Precis Med 11:e002044

Showing the most recent 10 out of 16 publications