The goal of this core is to provide the facilities and expertise to support projects involving mouse genetics as a toll for addressing biological questions. All of the projects listed in this grant have a need for this facility. The major components of this core are: 1) generation of transgenic and gene targeted mice, 2) pathology/histology of tissues from transgenic animals, and 3) vascular injury and angiogenesis models in vivo. Specifically, the core will perform gene targeting in further breeding of animals on desired genetic backgrounds to obtain gene targeted animals, perform pro-nuclear microinjection of DNA to make transgenic mice, provide genotyping support by PCR and Southern blot analysis to identify transgenic animals, provide a tissue processing and histology facility for analysis for embryos/tissues generated from this resource, and utilize in vivo vascular injury and disease models to test effects of genetic modification of vascular signaling processes. Additional support provided by this core is the collection of mouse embryos from timed matings, and expertise with in vitro culture and differentiation of ES cells.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015555-03
Application #
6653625
Study Section
Special Emphasis Panel (ZRR1)
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Maine Medical Center
Department
Type
DUNS #
City
Portland
State
ME
Country
United States
Zip Code
04102
Soley, Luna; Falank, Carolyne; Reagan, Michaela R (2017) MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells. Curr Osteoporos Rep 15:162-170
Young, K; Krebs, L T; Tweedie, E et al. (2016) Endoglin is required in Pax3-derived cells for embryonic blood vessel formation. Dev Biol 409:95-105
Ames, Jacquelyn J; Contois, Liangru; Caron, Jennifer M et al. (2016) Identification of an Endogenously Generated Cryptic Collagen Epitope (XL313) That May Selectively Regulate Angiogenesis by an Integrin Yes-associated Protein (YAP) Mechano-transduction Pathway. J Biol Chem 291:2731-50
Contois, Liangru W; Akalu, Abebe; Caron, Jennifer M et al. (2015) Inhibition of tumor-associated ?v?3 integrin regulates the angiogenic switch by enhancing expression of IGFBP-4 leading to reduced melanoma growth and angiogenesis in vivo. Angiogenesis 18:31-46
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E et al. (2013) Altered thermogenesis and impaired bone remodeling in Misty mice. J Bone Miner Res 28:1885-97
Apra, Caroline; Richard, Laurence; Coulpier, Fanny et al. (2012) Cthrc1 is a negative regulator of myelination in Schwann cells. Glia 60:393-403
Contois, Liangru W; Nugent, Desiree P; Caron, Jennifer M et al. (2012) Insulin-like growth factor binding protein-4 differentially inhibits growth factor-induced angiogenesis. J Biol Chem 287:1779-89
Urs, Sumithra; Henderson, Terry; Le, Phuong et al. (2012) Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction. Br J Nutr 108:1025-33
Sathyanarayana, Pradeep; Dev, Arvind; Pradeep, Anamika et al. (2012) Spry1 as a novel regulator of erythropoiesis, EPO/EPOR target, and suppressor of JAK2. Blood 119:5522-31
Motyl, Katherine J; Dick-de-Paula, Ingrid; Maloney, Ann E et al. (2012) Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain. Bone 50:490-8

Showing the most recent 10 out of 101 publications