This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.As key regulators of signal transduction pathways, protein kinases are misregulated in a variety of human pathologies. Accordingly protein kinases have long been considered excellent targets for inhibition by small molecules. However, the number of small molecules that target clinically relevant kinases is still quite low. This results predominantly from two considerations; 1) most kinase inhibitors are competitive with ATP and 2) the extent of evolutionary conservation of the ATP binding domain within protein kinases. This means that compounds identified as exquisitely potent inhibitors of a particular kinase in vitro may inhibit a broad number of kinases in vivo. Demonstrating in vivo specificity, a prerequisite for any translational therapeutic, remains a significant obstacle. Pak1 represents an attractive target as it is directly implicated in malignancy and its mechanism of activation allows for the isolation of ATP noncompetitive inhibitors. Paks are members of the Ste20 superfamily of kinases, and complement Ste20 deletions in S.cerevisiae. I have engineered a strain of S.cerevisiae in which growth is directly linked to the kinase activity of ectopic Pak1. I propose to use this platform to screen the small molecule libraries at the CCET for compounds that inhibit Pak1-dependent growth in vivo and to use the power of genetics to counter-select against compounds that target unrelated proteins. I propose confirm specificity by testing promising compounds identified from this platform against recombinant Pak1 in vitro and to further transition these compounds cell culture systems to evaluate their ability to inhibit in higher systems.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015563-09
Application #
7720085
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2008-03-01
Project End
2009-02-28
Budget Start
2008-03-01
Budget End
2009-02-28
Support Year
9
Fiscal Year
2008
Total Cost
$157,208
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Subramanian, Chitra; Grogan, Patrick T; Opipari, Valerie P et al. (2018) Novel natural withanolides induce apoptosis and inhibit migration of neuroblastoma cells through down regulation of N-myc and suppression of Akt/mTOR/NF-?B activation. Oncotarget 9:14509-14523
Ishiguro, Susumu; Kawabata, Atsushi; Zulbaran-Rojas, Alejandro et al. (2018) Co-treatment with a C1B5 peptide of protein kinase C? and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation. Biochem Biophys Res Commun 495:962-968
He, Chenchen; Duan, Shaofeng; Dong, Liang et al. (2017) Characterization of a novel p110?-specific inhibitor BL140 that overcomes MDV3100-resistance in castration-resistant prostate cancer cells. Prostate 77:1187-1198
White, Peter T; Subramanian, Chitra; Zhu, Qing et al. (2016) Novel HSP90 inhibitors effectively target functions of thyroid cancer stem cell preventing migration and invasion. Surgery 159:142-51
Ohta, Naomi; Ishiguro, Susumu; Kawabata, Atsushi et al. (2015) Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS One 10:e0123756
Li, Benyi; Thrasher, James Brantley; Terranova, Paul (2015) Glycogen synthase kinase-3: a potential preventive target for prostate cancer management. Urol Oncol 33:456-63
Ishiguro, Susumu; Yoshimura, Kiyoshi; Tsunedomi, Ryouichi et al. (2015) Involvement of angiotensin II type 2 receptor (AT2R) signaling in human pancreatic ductal adenocarcinoma (PDAC): a novel AT2R agonist effectively attenuates growth of PDAC grafts in mice. Cancer Biol Ther 16:307-16
Standard, Joseph; Jiang, Yu; Yu, Miao et al. (2014) Reduced signaling of PI3K-Akt and RAS-MAPK pathways is the key target for weight-loss-induced cancer prevention by dietary calorie restriction and/or physical activity. J Nutr Biochem 25:1317-23
Peterson, Kenneth R; Costa, Flávia C; Fedosyuk, Halyna et al. (2014) A cell-based high-throughput screen for novel chemical inducers of fetal hemoglobin for treatment of hemoglobinopathies. PLoS One 9:e107006
Kong, Bo; Huang, Jiansheng; Zhu, Yan et al. (2014) Fibroblast growth factor 15 deficiency impairs liver regeneration in mice. Am J Physiol Gastrointest Liver Physiol 306:G893-902

Showing the most recent 10 out of 240 publications