This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The Spontaneously Hypertensive Rat (SHR) is the most widely studied model of genetic hypertension, and Wistar Kyoto (WKY) are oftentimes utilized as normotensive controls. I have previously shown that early transient inhibition of the renin-angiotensin system (RAS) in young SHR results in a permanent reduction of blood pressure after drug treatment is withdrawn. My long-term objective is to understand the mechanism(s) involved in this phenomenon. My preliminary findings indicate that SHR transiently treated with an antagonist of the RAS have diminished responses to both ganglionic blockade and to a novel form of stress. To advance this work further, I need to understand the link between the permanent reduction of blood pressure and adaptive behavior of the animals. My collaborators (listed above) have helped in performing behavioral studies to assess anxiety (by elevated-plus-maze) and reactivity (biochemical, as well as pressor responses) to standard stressors such as forced restraint and footshock paradigms. We are also proposing to assess changes in the central RAS by measuring pressor responses to intracerebroventricular infusion of angiotensin II and by performing semiquantitative measures of angiotensin AT1 receptors in cardio-regulatory brain regions. We are postulating that early antihypertensive treatment with an angiotensin converting enzyme inhibitor alters density of AT1 angiotensin receptors and/or responses to angiotensin II in cardio-regulatory regions of the brain. We propose that these alterations of central RAS are linked to reductions in anxiety and reactivity to stressors in SHR, that may ultimately contribute to a permanent reduction of blood pressure.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015567-10
Application #
7959617
Study Section
Special Emphasis Panel (ZRR1-RI-8 (02))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
10
Fiscal Year
2009
Total Cost
$12,392
Indirect Cost
Name
University of South Dakota
Department
Neurosciences
Type
Schools of Medicine
DUNS #
929930808
City
Vermillion
State
SD
Country
United States
Zip Code
57069
Burrell, Brian D (2017) Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 117:1461-1473
Robertson, James M; Achua, Justin K; Smith, Justin P et al. (2017) Anxious behavior induces elevated hippocampal Cb2 receptor gene expression. Neuroscience 352:273-284
Novick, Andrew M; Mears, Mackenzie; Forster, Gina L et al. (2016) Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood. Behav Brain Res 304:51-9
Smith, Justin P; Prince, Melissa A; Achua, Justin K et al. (2016) Intensity of anxiety is modified via complex integrative stress circuitries. Psychoneuroendocrinology 63:351-61
Robertson, James M; Prince, Melissa A; Achua, Justin K et al. (2015) Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety. Physiol Behav 146:86-97
Ranek, Mark J; Zheng, Hanqiao; Huang, Wei et al. (2015) Genetically induced moderate inhibition of 20S proteasomes in cardiomyocytes facilitates heart failure in mice during systolic overload. J Mol Cell Cardiol 85:273-81
Hahn, Elizabeth; Burrell, Brian (2015) Pentylenetetrazol-induced seizure-like behavior and neural hyperactivity in the medicinal leech. Invert Neurosci 15:177
Novick, Andrew M; Forster, Gina L; Hassell, James E et al. (2015) Increased dopamine transporter function as a mechanism for dopamine hypoactivity in the adult infralimbic medial prefrontal cortex following adolescent social stress. Neuropharmacology 97:194-200
Ranek, Mark J; Kost Jr, Curtis K; Hu, Chengjun et al. (2014) Muscarinic 2 receptors modulate cardiac proteasome function in a protein kinase G-dependent manner. J Mol Cell Cardiol 69:43-51
Watt, Michael J; Roberts, Christina L; Scholl, Jamie L et al. (2014) Decreased prefrontal cortex dopamine activity following adolescent social defeat in male rats: role of dopamine D2 receptors. Psychopharmacology (Berl) 231:1627-36

Showing the most recent 10 out of 171 publications