This project will develop and investigate small molecules for inhibition of specific protein functions. The design of these inhibitors and analysis of their effects on protein function will define how change sin protein structure relate to corresponding changes in function. This collaborative effort will draw on expertise in enzymology, chemistry, structural biology, and molecular modeling to design, prepare and assay these molecules. Compounds that show initial promise will be further optimized through combinatorial library development of more diverse structures. Our specific target include helicase and tubulin, and these are the two specific aims: I. Structure and Function Analysis of NS3 Helicase Through Inhibitor Development. The goal of this research is to design inhibitors for the Hepatitis C virus NS3 helicase using a rationally designed combinatorial approach. The research will also provide structure/function and kinetic mechanistic information on the helicase and its model of translocation of single-stranded DNA. II. Designed Ligands for Tubulin and Tubulin-binding Protein Cofactors. The goals of this project are to prepare anti-mitotic agents based on the eleutherobin and astrogorgin scaffolds, and to develop ligands which inhibit tubulin assembly by binding to tubulin-binding cofactors or cofactor-tubulin complexes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015569-02
Application #
6494909
Study Section
Special Emphasis Panel (ZRR1)
Project Start
2001-09-01
Project End
2002-08-31
Budget Start
Budget End
Support Year
2
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Arkansas at Fayetteville
Department
Type
DUNS #
191429745
City
Fayetteville
State
AR
Country
United States
Zip Code
72701
Davis, Julie Eberle; Alghanmi, Arwa; Gundampati, Ravi Kumar et al. (2018) Probing the role of proline -135 on the structure, stability, and cell proliferation activity of human acidic fibroblast growth factor. Arch Biochem Biophys 654:115-125
Kang, Seong W; Jayanthi, Srinivas; Nagarajan, Gurueswar et al. (2018) Identification of avian vasotocin receptor subtype-specific antagonists involved in the stress response of the chicken, Gallus gallus. J Biomol Struct Dyn :1-15
Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh (2017) Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag. Curr Protoc Protein Sci 90:6.16.1-6.16.13
Prudovsky, Igor; Kacer, Doreen; Davis, Julie et al. (2016) Folding of Fibroblast Growth Factor 1 Is Critical for Its Nonclassical Release. Biochemistry 55:1159-67
Manoj, Kelath Murali; Parashar, Abhinav; Gade, Sudeep K et al. (2016) Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes. Front Pharmacol 7:161
Yadav, N; Kumar, S; Marlowe, T et al. (2015) Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis 6:e1969
Stratford Jr, Robert; Vu, Christopher; Sakon, Joshua et al. (2014) Pharmacokinetics in rats of a long-acting human parathyroid hormone-collagen binding domain peptide construct. J Pharm Sci 103:768-75
Ponnapakkam, T; Katikaneni, R; Sakon, J et al. (2014) Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discov Today 19:204-8
Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Matsushita, Osamu et al. (2014) Treatment and prevention of chemotherapy-induced alopecia with PTH-CBD, a collagen-targeted parathyroid hormone analog, in a non-depilated mouse model. Anticancer Drugs 25:30-8
Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Seymour, Andrew et al. (2014) Parathyroid hormone linked to a collagen binding domain promotes hair growth in a mouse model of chemotherapy-induced alopecia in a dose-dependent manner. Anticancer Drugs 25:819-25

Showing the most recent 10 out of 204 publications