This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The goals of this project are to develop and use our new Calkyl-Calkyl cross-coupling methodology for the preparation of a library of potential ?-chemokine receptor CCR5 antagonists. It has been shown that HIV-1 infection of macrophages, monocytes, and T-cells is mediated by interaction with the ?-chemokine receptor CCR5. However, as no crystal structure of CCR5 exists, a protein structure-based CCR5 antagonist design has been slow to develop. We have made substantial progress in discovering new catalytic and stoichiometric reactions related to the manipulation of C(sp3) bonds, and we plan to use this methodology to build entry inhibitors that block the binding of HIV-I gp120 to CCR5.
Specific aims for the grant period include: 1) Employing our alkyl-alkyl cross-coupling methodology to rapidly synthesize new derivatives of compounds which are modulators of chemokine receptor activity. 2) Optimizing the methodology for our high-throughput approach by determining the effects of ligand modification on the rates, scope, and mechanism of C(sp3)-C(sp3) cross-coupling catalysis. 3) Developing Heck-type reactions of alkyl electrophiles in order to increase the range of substrates that can be used in the library synthesis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015569-07
Application #
7381116
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
7
Fiscal Year
2006
Total Cost
$395,270
Indirect Cost
Name
University of Arkansas at Fayetteville
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
191429745
City
Fayetteville
State
AR
Country
United States
Zip Code
72701
Davis, Julie Eberle; Alghanmi, Arwa; Gundampati, Ravi Kumar et al. (2018) Probing the role of proline -135 on the structure, stability, and cell proliferation activity of human acidic fibroblast growth factor. Arch Biochem Biophys 654:115-125
Kang, Seong W; Jayanthi, Srinivas; Nagarajan, Gurueswar et al. (2018) Identification of avian vasotocin receptor subtype-specific antagonists involved in the stress response of the chicken, Gallus gallus. J Biomol Struct Dyn :1-15
Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh (2017) Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag. Curr Protoc Protein Sci 90:6.16.1-6.16.13
Prudovsky, Igor; Kacer, Doreen; Davis, Julie et al. (2016) Folding of Fibroblast Growth Factor 1 Is Critical for Its Nonclassical Release. Biochemistry 55:1159-67
Manoj, Kelath Murali; Parashar, Abhinav; Gade, Sudeep K et al. (2016) Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes. Front Pharmacol 7:161
Yadav, N; Kumar, S; Marlowe, T et al. (2015) Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis 6:e1969
Stratford Jr, Robert; Vu, Christopher; Sakon, Joshua et al. (2014) Pharmacokinetics in rats of a long-acting human parathyroid hormone-collagen binding domain peptide construct. J Pharm Sci 103:768-75
Ponnapakkam, T; Katikaneni, R; Sakon, J et al. (2014) Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discov Today 19:204-8
Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Matsushita, Osamu et al. (2014) Treatment and prevention of chemotherapy-induced alopecia with PTH-CBD, a collagen-targeted parathyroid hormone analog, in a non-depilated mouse model. Anticancer Drugs 25:30-8
Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Seymour, Andrew et al. (2014) Parathyroid hormone linked to a collagen binding domain promotes hair growth in a mouse model of chemotherapy-induced alopecia in a dose-dependent manner. Anticancer Drugs 25:819-25

Showing the most recent 10 out of 204 publications