This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The purpose of Core C will be to significantly reduce variability in all Projects of the proposal by providing the expertise, personnel, facilities, equipment, and supplies required to reproducibly perform their surgery and veterinary care procedures. The standardized surgery procedures will include producing contusion and laceration types of spinal cord cord injuries in adult rats and mice plus cell transplantation, injection, neuroanatomical tracing, cranial electrode implantation, euthanasia, perfusion fixation, and tissue dissection. The standardized, daily veterinary care procedures are designed to significantly reduce morbidity and mortality. They will include treating wounds, expressing bladders, preventing urinary tract and other infections, plus providing supplemental fluids and nutrition.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015576-10
Application #
7959674
Study Section
Special Emphasis Panel (ZRR1-RI-8 (02))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
10
Fiscal Year
2009
Total Cost
$139,545
Indirect Cost
Name
University of Louisville
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Kuypers, Nicholas J; Bankston, Andrew N; Howard, Russell M et al. (2016) Remyelinating Oligodendrocyte Precursor Cell miRNAs from the Sfmbt2 Cluster Promote Cell Cycle Arrest and Differentiation. J Neurosci 36:1698-710
Myers, Scott A; Bankston, Andrew N; Burke, Darlene A et al. (2016) Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Exp Neurol 283:560-72
Ward, P J; Herrity, A N; Harkema, S J et al. (2016) Training-Induced Functional Gains following SCI. Neural Plast 2016:4307694
May, Zacnicte; Fouad, Karim; Shum-Siu, Alice et al. (2015) Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion. Behav Brain Res 291:26-35
Jagadapillai, Rekha; Mellen, Nicholas M; Sachleben Jr, Leroy R et al. (2014) Ceftriaxone preserves glutamate transporters and prevents intermittent hypoxia-induced vulnerability to brain excitotoxic injury. PLoS One 9:e100230
Nielson, Jessica L; Guandique, Cristian F; Liu, Aiwen W et al. (2014) Development of a database for translational spinal cord injury research. J Neurotrauma 31:1789-99
Ward, Patricia J; Herrity, April N; Smith, Rebecca R et al. (2014) Novel multi-system functional gains via task specific training in spinal cord injured male rats. J Neurotrauma 31:819-33
Schultz, R L; Kullman, E L; Waters, R P et al. (2013) Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats. Physiol Res 62:361-9
Burke, Darlene A; Whittemore, Scott R; Magnuson, David S K (2013) Consequences of common data analysis inaccuracies in CNS trauma injury basic research. J Neurotrauma 30:797-805
Ohri, Sujata Saraswat; Hetman, Michal; Whittemore, Scott R (2013) Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury. Neurobiol Dis 58:29-37

Showing the most recent 10 out of 150 publications