Human stem cells efficiently colonize the bone marrow of lightly irradiated NOD/SCID mice and active produce cells in the B lymphocyte lineage pathway. With retroviral gene introduction methods, this system makes it possible to investigate many molecular aspects of human lymphocyte formation. Studies with mice indicate that B and T transcriptional repressor Id-1 and related molecules can block both pathways of differentiation at very early stages. While extracellular cues that regulate HLH function are poorly defined. Notch plays a role in fate decisions made by early lymphocyte precursors and may do so in part by blocking HLH protein products of the E2A gene. We will obtain detailed information about the normal patterns of gene expression for various HLH family members, Id proteins, Notch and Notch ligands in human B cell precursors. Experiments will then be done with the NOD/SCID chimera model to test cassettes into human stem cells before transplantation to NOD/SCID mice. Alterations in lymphocyte survival, proliferation and differentiation will be thoroughly characterized. It is also possible that malignancies will develop since E2A and related molecules are known to function as tumor suppressors. These experiments will provide information about mechanisms for normal regulation of the very earliest stage in human lymphopoiesis. The findings should be relevant to understanding immunodeficiency and autoimmune disease as well as malignancies.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015577-02
Application #
6494174
Study Section
Special Emphasis Panel (ZRR1)
Project Start
2001-09-01
Project End
2002-08-31
Budget Start
Budget End
Support Year
2
Fiscal Year
2001
Total Cost
$256,079
Indirect Cost
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
937727907
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2018) Modeling Transcriptional Rewiring in Neutrophils Through the Course of Treated Juvenile Idiopathic Arthritis. Sci Rep 8:7805
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2016) Complexity and Specificity of the Neutrophil Transcriptomes in Juvenile Idiopathic Arthritis. Sci Rep 6:27453
Molineros, Julio E; Maiti, Amit K; Sun, Celi et al. (2013) Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet 9:e1003222
Smith, Kenneth; Muther, Jennifer J; Duke, Angie L et al. (2013) Fully human monoclonal antibodies from antibody secreting cells after vaccination with Pneumovax®23 are serotype specific and facilitate opsonophagocytosis. Immunobiology 218:745-54
Dozmorov, Igor; Dominguez, Nicolas; Sestak, Andrea L et al. (2013) Evidence of dynamically dysregulated gene expression pathways in hyperresponsive B cells from African American lupus patients. PLoS One 8:e71397
Jiang, Kaiyu; Frank, Mark; Chen, Yanmin et al. (2013) Genomic characterization of remission in juvenile idiopathic arthritis. Arthritis Res Ther 15:R100
Kurien, Biji T; D'Sousa, Anil; Bruner, Benjamin F et al. (2013) Prolidase deficiency breaks tolerance to lupus-associated antigens. Int J Rheum Dis 16:674-80
Lin, C P; Adrianto, I; Lessard, C J et al. (2012) Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes Immun 13:232-8
Hughes, Travis; Adler, Adam; Kelly, Jennifer A et al. (2012) Evidence for gene-gene epistatic interactions among susceptibility loci for systemic lupus erythematosus. Arthritis Rheum 64:485-92
Vaughn, Samuel E; Kottyan, Leah C; Munroe, Melissa E et al. (2012) Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J Leukoc Biol 92:577-91

Showing the most recent 10 out of 194 publications