Ligand-gated and voltage-regulated ion channels on the surface of excitable cells mediate synaptic transmission and neurosecretion. Not surprisingly, mutations of ion channel genes contribute to a wide variety of pathological disorders that can affect neural differentiation and cause neurodegeneration. This proposal is multi-disciplinary ranging from molecular structure, regulation of ion channel function using biophysical techniques, cell biology, to studying the effects of ion channel mutations on animal behavior. The channels being studied include the multimeric gated nicotinic acetylcholine and glutamate receptors and the voltage-gated calcium channels. These ion channels provide important sites for pharmacological intervention in disease status, such as, addiction, epilepsy, and neuronal death due to trauma or stroke, as well as neurodegenerative disease. Approaches being exploited include, expression and analysis of protein domains by NMR, reconstitution of normal or genetically modified ion channels in cell lines to determine their binding and interaction with neurotoxins, patch-clamp analysis to examine the biophysical properties of channel splice variants, modulation ion channels by scaffolding proteins and protein phosphorylation, slice-recording and analysis of animal behavior. Within this context we will use transgenic methods for targeted ion channel knock-out and knock-in experiments to further reveal the physiological consequences of specific channel mutations and to elucidate the physiological roles of specific channel subunits combinations.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015578-03
Application #
6653640
Study Section
Special Emphasis Panel (ZRR1)
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
$236,556
Indirect Cost
Name
Brown University
Department
Type
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Lovasco, Lindsay A; Gustafson, Eric A; Seymour, Kimberly A et al. (2015) TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 33:1267-76
Ribeiro, Jennifer R; Freiman, Richard N (2014) Estrogen signaling crosstalk: Implications for endocrine resistance in ovarian cancer. J Steroid Biochem Mol Biol 143:160-73
Casella, Cinzia; Miller, Daniel H; Lynch, Kerry et al. (2014) Oxysterols synergize with statins by inhibiting SREBP-2 in ovarian cancer cells. Gynecol Oncol 135:333-41
Grive, Kathryn J; Seymour, Kimberly A; Mehta, Rajvi et al. (2014) TAF4b promotes mouse primordial follicle assembly and oocyte survival. Dev Biol 392:42-51
Tomimaru, Yoshito; Xu, Chelsea Q; Nambotin, Sarah B et al. (2013) Loss of exon 4 in a human T-cell factor-4 isoform promotes hepatic tumourigenicity. Liver Int 33:1536-48
Minhas, Hassan M; Pescosolido, Matthew F; Schwede, Matthew et al. (2013) An unbalanced translocation involving loss of 10q26.2 and gain of 11q25 in a pedigree with autism spectrum disorder and cerebellar juvenile pilocytic astrocytoma. Am J Med Genet A 161A:787-91
De Cecco, Marco; Criscione, Steven W; Peckham, Edward J et al. (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247-56
Li, Hua; Jogl, Gerwald (2013) Crystal structure of decaprenylphosphoryl-?- D-ribose 2'-epimerase from Mycobacterium smegmatis. Proteins 81:538-43
Tomimaru, Yoshito; Koga, Hironori; Yano, Hirohisa et al. (2013) Upregulation of T-cell factor-4 isoform-responsive target genes in hepatocellular carcinoma. Liver Int 33:1100-12
Tomimaru, Yoshito; Koga, Hironori; Shin, Tai Ho et al. (2013) The SxxSS motif of T-cell factor-4 isoforms modulates Wnt/?-catenin signal activation in hepatocellular carcinoma cells. Cancer Lett 336:359-69

Showing the most recent 10 out of 152 publications