Genetic studies both at the organismal and cellular levels demand a sophisticated downstream analysis of the phenotypes that result from genetic manipulations. The creation of the transgenic and knockout animals proposed in this application, as well as the increasing capabilities of investigators using cell culture models provided by modern transient transfection technologies, will greatly increase the need for evaluating patterns of gene expression. Modern flow cytometry is the method of choice to answer these needs, especially because it provides unsurpassed capability to evaluate changes at the single cell level in large populations of cells. To accommodate the needs of this diverse group of investigators it is therefore proposed to establish a state of the art preparative flow cytometry core facility. In addition to all analytical procedures, this facility will have the ability to sort transiently transfected cells in a sterile fashion and provide investigators with pools of productively transfected viable cells that can be returned to culture for further observations or manipulation. This capability can in many cases obviate the need for stable transfection and thus result in a significant time saving. In addition, this method can be especially effective in establishing antisense ablation. The core will be supervised by Dr. John Sedivy, Professor, an expert in the field of cell cycle regulation, who has a long track record of publications using the proposed technologies. On a day to day basis the core will be run by a highly trained technician who will aid users in the preparation and analysis of their samples. Users of this core facility will have access not only to a state of the art flow cytometer, but also to guidance, expertise and training towards applying this technology to their own research needs.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015578-03
Application #
6653636
Study Section
Special Emphasis Panel (ZRR1)
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
$236,556
Indirect Cost
Name
Brown University
Department
Type
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Lovasco, Lindsay A; Gustafson, Eric A; Seymour, Kimberly A et al. (2015) TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 33:1267-76
Ribeiro, Jennifer R; Freiman, Richard N (2014) Estrogen signaling crosstalk: Implications for endocrine resistance in ovarian cancer. J Steroid Biochem Mol Biol 143:160-73
Casella, Cinzia; Miller, Daniel H; Lynch, Kerry et al. (2014) Oxysterols synergize with statins by inhibiting SREBP-2 in ovarian cancer cells. Gynecol Oncol 135:333-41
Grive, Kathryn J; Seymour, Kimberly A; Mehta, Rajvi et al. (2014) TAF4b promotes mouse primordial follicle assembly and oocyte survival. Dev Biol 392:42-51
Tomimaru, Yoshito; Xu, Chelsea Q; Nambotin, Sarah B et al. (2013) Loss of exon 4 in a human T-cell factor-4 isoform promotes hepatic tumourigenicity. Liver Int 33:1536-48
Minhas, Hassan M; Pescosolido, Matthew F; Schwede, Matthew et al. (2013) An unbalanced translocation involving loss of 10q26.2 and gain of 11q25 in a pedigree with autism spectrum disorder and cerebellar juvenile pilocytic astrocytoma. Am J Med Genet A 161A:787-91
De Cecco, Marco; Criscione, Steven W; Peckham, Edward J et al. (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247-56
Li, Hua; Jogl, Gerwald (2013) Crystal structure of decaprenylphosphoryl-?- D-ribose 2'-epimerase from Mycobacterium smegmatis. Proteins 81:538-43
Tomimaru, Yoshito; Koga, Hironori; Yano, Hirohisa et al. (2013) Upregulation of T-cell factor-4 isoform-responsive target genes in hepatocellular carcinoma. Liver Int 33:1100-12
Tomimaru, Yoshito; Koga, Hironori; Shin, Tai Ho et al. (2013) The SxxSS motif of T-cell factor-4 isoforms modulates Wnt/?-catenin signal activation in hepatocellular carcinoma cells. Cancer Lett 336:359-69

Showing the most recent 10 out of 152 publications